Multiplicity and concentration results for a (pq)-Laplacian problem in \({\mathbb {R}}^{N}\)


In this paper, we study the multiplicity and concentration of positive solutions for the following (pq)-Laplacian problem:

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _{p} u -\Delta _{q} u +V(\varepsilon x) \left( |u|^{p-2}u + |u|^{q-2}u\right) = f(u) &{} \text{ in } {\mathbb {R}}^{N}, \\ u\in W^{1, p}({\mathbb {R}}^{N})\cap W^{1, q}({\mathbb {R}}^{N}), \quad u>0 \text{ in } {\mathbb {R}}^{N}, \end{array} \right. \end{aligned}$$

where \(\varepsilon >0\) is a small parameter, \(1< p<q<N\), \(\Delta _{r}u={{\,\mathrm{div}\,}}(|\nabla u|^{r-2}\nabla u)\), with \(r\in \{p, q\}\), is the r-Laplacian operator, \(V:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}\) is a continuous function satisfying the global Rabinowitz condition, and \(f:{\mathbb {R}}\rightarrow {\mathbb {R}}\) is a continuous function with subcritical growth. Using suitable variational arguments and Ljusternik–Schnirelmann category theory, we investigate the relation between the number of positive solutions and the topology of the set where V attains its minimum for small \(\varepsilon \).

This is a preview of subscription content, access via your institution.


  1. 1.

    Adams, R.A.: Sobolev Spaces, Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975). xviii+268 pp

    Google Scholar 

  2. 2.

    Alves, C.O.: Existence of positive solutions for a problem with lack of compactness involving the \(p\)-Laplacian. Nonlinear Anal. 51(7), 1187–1206 (2002)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Alves, C.O., Figueiredo, G.M.: Multiplicity and concentration of positive solutions for a class of quasilinear problems. Adv. Nonlinear Stud. 11(2), 265–294 (2011)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Ambrosio, V.: Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method. Ann. Mat. Pura Appl. (4) 196(6), 2043–2062 (2017)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ambrosio, V., Isernia, T.: Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional \(p\)-Laplacian. Discrete Contin. Dyn. Syst. 38(11), 5835–5881 (2018)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2, 29–48 (1994)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Cherfils, L., Il’yasov, V.: On the stationary solutions of generalized reaction diffusion equations with \(p\)&\(q\)-Laplacian. Commun. Pure Appl. Anal. 1, 1–14 (2004)

    MATH  Google Scholar 

  10. 10.

    Cingolani, S., Lazzo, M.: Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Differ. Equ. 160(1), 118–138 (2000)

    Article  Google Scholar 

  11. 11.

    Figueiredo, G.M.: Existence of positive solutions for a class of \(p\)&\(q\) elliptic problems with critical growth on \({\mathbb{R}}^{N}\). J. Math. Anal. Appl. 378, 507–518 (2011)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Figueiredo, G.M.: Existence and multiplicity of solutions for a class of \(p\)&\(q\) elliptic problems with critical exponent. Math. Nachr. 286, 1129–1141 (2013)

    MathSciNet  Article  Google Scholar 

  13. 13.

    He, C., Li, G.: The regularity of weak solutions to nonlinear scalar field elliptic equations containing \(p\)&\(q\)-Laplacians. Ann. Acad. Sci. Fenn. Math. 33(2), 337–371 (2008)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    He, C., Li, G.: The existence of a nontrivial solution to the \(p\)&\(q\)-Laplacian problem with nonlinearity asymptotic to \(u^{p-1}\) at infinity in \({\mathbb{R}}^{N}\). Nonlinear Anal. 68(5), 1100–1119 (2008)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Li, G., Guo, Z.: Multiple solutions for the \(p\)&\(q\)-Laplacian problem with critical exponent. Acta Math. Sci. Ser. B Engl. Ed. 29(4), 903–918 (2009)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Li, G.B., Liang, X.: The existence of nontrivial solutions to nonlinear elliptic equation of \(p\)-\(q\)-Laplacian type on \({\mathbb{R}}^{N}\). Nonlinear Anal. 71, 2316–2334 (2009)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Mercuri, C., Willem, M.: A global compactness result for the \(p\)-Laplacian involving critical nonlinearities. Discrete Contin. Dyn. Syst. 2(8), 469–493 (2010)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Moser, J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Papageorgiou, N., Rădulescu, V.D., Repovš, D.: Nonlinear nonhomogeneous singular problems. Calc. Var. Partial Differ. Equ. 59(1) (2020). Art. 9, 31 pp

  21. 21.

    Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43, 270–291 (1992)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Simon, J.: Régularité de la solution d’un problème aux limites non linéaires. Ann. Fac. Sci. Toulouse Math. 3, 247–274 (1981)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Szulkin, A., Weth, T.: The Method of Nehari Manifold, Handbook of Nonconvex Analysis and Applications, pp. 597–632. Int. Press, Somerville (2010)

    MATH  Google Scholar 

  24. 24.

    Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc, Boston (1996). x+162 pp

    Google Scholar 

Download references


The authors are very grateful to the anonymous referee for his/her careful reading of the manuscript and valuable suggestions that improved the presentation of the paper. The first author was partly supported by the GNAMPA Project 2020 entitled: Studio Di Problemi Frazionari Nonlocali Tramite Tecniche Variazionali. The second author was partly supported by Slovenian research agency Grants P1-0292, N1-0114, N1-0083, N1-0064 and J1-8131.

Author information



Corresponding author

Correspondence to Vincenzo Ambrosio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ambrosio, V., Repovš, D. Multiplicity and concentration results for a (pq)-Laplacian problem in \({\mathbb {R}}^{N}\). Z. Angew. Math. Phys. 72, 33 (2021).

Download citation


  • (p
  •  q)-Laplacian problem
  • Positive solutions
  • Variational methods
  • Ljusternik–Schnirelmann theory

Mathematics Subject Classification

  • 35A15
  • 35B09
  • 35J62
  • 58E05