Existence and Hölder regularity of infinitely many solutions to a p-Kirchhoff-type problem involving a singular nonlinearity without the Ambrosetti–Rabinowitz (AR) condition


We carry out an investigation of the existence of infinitely many solutions to a fractional p-Kirchhoff-type problem with a singularity and a superlinear nonlinearity with a homogeneous Dirichlet boundary condition. Further, the solution(s) will be proved to be bounded and a weak comparison principle has also been proved. A ‘\(C^1\) versus \(W_0^{s,p}\)’ analysis has also been discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Iannizzotto, A., Squassina, M.: \(\frac{1}{2}\)-Laplacian problems with exponential nonlinearity. J. Math. Anal. Appl. 414(1), 372–385 (2014)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Barrios, B., Colorado, E., De Pablo, A., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252(11), 6133–6162 (2012)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Molica Bisci, G., Pansera, B.A.: Three weak solutions for nonlocal fractional equations. Adv. Nonlinear Stud. 14(3), 619–629 (2014)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Molica Bisci, G.: Fractional equations with bounded primitive. Appl. Math. Lett. 27, 53–58 (2014)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Teng, K.: Two nontrivial solutions for hemivariational inequalities driven by nonlocal elliptic operators. Nonlinear Anal. Real World Appl. 14(1), 867–874 (2013)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Servadei, R., Valdinoci, E.: Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators. Revista Mat. Iberoamericana 29(3), 1091–1126 (2013)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Ghanmi, A., Saoudi, K.: The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator. Fract. Differ. Calculus 6(2), 201–217 (2016)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Mukherjee, T., Sreenadh, K.: On Dirichlet problem for fractional \(p\)-Laplacian with singular non-linearity. Adv. Nonlinear Anal. 8(1), 52–72 (2019)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Daoues, A., Hammami, A., Saoudi, K.: Multiple positive solutions for a nonlocal PDE with critical Sobolev–Hardy and singular nonlinearities via perturbation method. Fract. Calc. Appl. Anal. 23(3), 837–860 (2020)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Saoudi, K.: \(W^{1, N}\) versus \(C^1\) local minimizer for a singular functional with Neumann boundary condition. Bol. Soc. Paran. Mat. (3) 37(1), 71–86 (2019)

    MATH  Google Scholar 

  13. 13.

    Saoudi, K.: A critical fractional elliptic equation with singular nonlinearities. Fract. Calc. Appl. Anal. 20(6), 1507–1530 (2017)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Kratou, M.: Ground state solutions of \(p\)-Laplacian singular Kirchhoff problem involving a Riemann–Liouville fractional derivative. Filomat 33(7), 2073–2088 (2019)

    MathSciNet  Google Scholar 

  15. 15.

    Mingqi, X., Bisci, G.M., Tian, G., Zhang, B.: Infinitely many solutions for the stationary Kirchhoff problems involving the fractional \(p\)-Laplacian. Nonlinearity 29(2), 357–374 (2016)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Mingqi, X., Zhang, B., Rădulescu, V.D.: Existence of solutions for a bi-nonlocal fractional \(p\)-Kirchhoff type problem. Comput. Math. Appl. 71(1), 255–266 (2016)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Zhang, B., Molica Bisci, G., Servadei, R.: Superlinear nonlocal fractional problems with infinitely many solutions. Nonlinearity 28(7), 2247–2264 (2015)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49(1), 85–93 (2005)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Molica Bisci, G.: Sequences of weak solutions for fractional equations. Math. Res. Lett. 21(2), 241–253 (2014)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Zuo, J., An, T., Liu, W.: A variational inequality of Kirchhoff type in \({\mathbb{R}}^N\). J. Inequal. Appl. 329, 1–9 (2018)

    Google Scholar 

  21. 21.

    Zuo, J., An, T., Yang, L., Ren, X.: The Nehari manifold for a fractional \(p\)-Kirchhoff system involving sign-changing weight function and concave-convex nonlinearities. J. Funct. Spaces Art. ID 7624373, 9 pages (2019)

  22. 22.

    Mingqi, X., Rădulescu, V.D., Zhang, B.: Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities. ESAIM Control Optim. Calc. Var. 24(3), 1249–1273 (2018)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Mingqi, X., Rădulescu, V.D., Zhang, B.: Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions. Nonlinearity 31(7), 3228–3250 (2018)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Mingqi, X., Zhang, B., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional \(p\)-Laplacian. J. Math. Anal. Appl. 424(2), 1021–1041 (2015)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Mingqi, X., Zhang, B., Qiu, H.: Existence of solutions for a critical fractional Kirchhoff type problem in \({\mathbb{R}}^N\). Sci. China Math. 60(9), 1647–1660 (2017)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Zuo, J., An, T., Li, M.: Superlinear Kirchhoff-type problems of the fractional \(p\)-Laplacian without the \((AR)\) condition. Bound. Value Probl. 2018, 180 (2018)

    MathSciNet  Google Scholar 

  27. 27.

    Mingqi, X., Zhang, B., Guo, X.: Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem. Nonlinear Anal. Theory Methods Appl. 120, 299–313 (2015)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Nyamoradi, N., Zaidan, L.I.: Existence of solutions for degenerate Kirchhoff type problems with fractional \(p\)-Laplacian. EJDE 2017, p. 115, 1–13, (2017)

  29. 29.

    Fiscella, A., Pucci, P.: \(p\)-fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal. Real World Appl. 35, 350–378 (2017)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Zuo, J., An, T., Li, X., Ma, Y.: A fractional \(p\)-Kirchhoff type problem involving a parameter. J. Nonlinear Funct. Anal. 2019, p. 32, 1–14 (2019)

  31. 31.

    Caponi, M., Pucci, P.: Existence theorems for entire solutions of stationary Kirchhoff fractional \(p\)-Laplacian equations. Annali di Matematica Pura ed Applicata (4) 195(6), 2099–2129 (2016)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in \({\mathbb{R}}^N\) involving nonlocal operators. Revista Mat. Iberoamericana 32(1), 1–22 (2016)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Ghosh, S.: An existence result for singular nonlocal fractional Kirchhoff-Schrödinger–Poisson system. arXiv:1909.13350

  34. 34.

    Mishra, P.K., Sreenadh, K.: Fractional \(p\)-Kirchhoff system with sign-changing nonlinearities, Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales. Serie A Matematicas 111(1), 281–296 (2017)

    MathSciNet  Google Scholar 

  35. 35.

    Pan, N., Zhang, B., Cao, J.: Degenerate Kirchhoff-type diffusion problems involving the fractional \(p\)-Laplacian. Nonlinear Anal. Real World Appl. 37, 56–70 (2017)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Ren, X., Zuo, J., Qiao, Z., Zhu, L.: Infinitely many solutions for a superlinear fractional \(p\)-Kirchhoff-type problem without the \((AR)\) condition. Adv. Math. Phys. 1353961-1-10 (2019)

  37. 37.

    Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Carrier, G.F.: On the non-linear vibration problem of the elastic string. Q. Appl. Math. 3, 157–165 (1945)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Thin, N.V.: Nontrivial solutions of some fractional problems. Nonlinear Anal. Real World Appl. 38, 146–170 (2017)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman-Lazer-type problem set on \({\mathbb{R}}^N\). Proc. R. Soc. Eding. Sect. A Math. 129(4), 787–809 (1999)

    MATH  Google Scholar 

  41. 41.

    Adams, R.A., Fournier, J.J.: Sobolev Spaces, 2nd edn. Academic press, New York (2003)

    Google Scholar 

  42. 42.

    Servadei, R., Valdinoci, E.: Variational methods for nonlocal operators of elliptic type. Discrete Contin. Dyn. Syst. Ser. A 33(5), 2105–2137 (2013)

    MATH  Google Scholar 

  43. 43.

    Soni, A., Choudhuri, D.: Existence of multiple solutions to an elliptic problem with measure data. J. Elliptic Parabol. Equ. 4(2), 369–388 (2018)

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Colasuonno, F., Pucci, P.: Multiplicity of solutions for \(p(x)\)-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. Theory Method Appl. 74(17), 5962–5974 (2011)

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Mingqi, X., Zhang, B.: Degenerate Kirchhoff problems involving the fractional \(p\)-Laplacian without the \((AR)\) condition. Complex Var. Elliptic Equ. 60(9), 1277–1287 (2015)

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Saoudi, K., Ghosh, S., Choudhuri, D.: Multiplicity and Hölder regularity of solutions for a nonlocal elliptic PDE involving singularity. J. Math. Phys. 60(101509), 1–28 (2019)

    MATH  Google Scholar 

  47. 47.

    Iannizzotto, A., Mosconi, S., Squassina, M.: \(H^s\) versus \(C^0\)-weighted minimizers. Nonlinear Differ. Equ. Appl. NoDEA 22(3), 477–497 (2015)

    MATH  Google Scholar 

  48. 48.

    Giacomoni, J., Saoudi, K.: \(W_0^{1, p}\) versus \(C^1\) local minimizers for a singular and critical functional. J. Math. Anal. Appl. 363(2), 697–710 (2010)

    MathSciNet  MATH  Google Scholar 

  49. 49.

    Saoudi, K.: On \(W^{s,p}\) vs. \(C^1\) local minimizers for a critical functional related to fractional \(p\)-Laplacian. Appl. Anal. 96(9), 1586–1595 (2017)

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Revista Matemática Iberoamericana 32(4), 1353–1392 (2016)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Iannizzotto, A., Mosconi, S., Squassina, M.: Fine boundary regularity for the degenerate fractional \(p\)-Laplacian. J. Funct. Anal. 279(8), 108659 1-54 (2020)

    MathSciNet  MATH  Google Scholar 

  52. 52.

    Khaled, M., Rhoudaf, M., Sabiki, H.: Lagrange multiplier rule to a nonlinear eigenvalue problem in Musielak–Orlicz spaces. Numer. Funct. Anal. Optim. 41(2), 134–157 (2020)

    MathSciNet  MATH  Google Scholar 

  53. 53.

    Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1), 49–62 (1979)

    MathSciNet  MATH  Google Scholar 

  54. 54.

    Giacomoni, J., Schindler, I., Takáč, P.: Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 6(2), 117–158 (2007)

    MATH  Google Scholar 

  55. 55.

    Wang, L., Xie, K., Zhang, B.: Existence and multiplicity of solutions for critical Kirchhoff-type \(p\)-Laplacian problems. J. Math. Anal. Appl. 458(1), 361–378 (2018)

    MathSciNet  MATH  Google Scholar 

Download references


The author thanks S. Ghosh for the numerous discussion sessions and the constructive criticisms on the article. Thanks are due to the anonymous reviewers for their constructive comments that led to the improvement of this manuscript. The author also dedicates this article to thousands of laborers and workers of India who, during this COVID19 pandemic, have lost their lives travelling on foot for thousands of kilometers to reach their respective homes.

Author information



Corresponding author

Correspondence to Debajyoti Choudhuri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



The appendix will address a few results that have been used in this article. Lemma 5.2 guarantees the existence of a positive solution to (3.7), and Lemma 5.5 will establish that the functional \({\bar{I}}\) verifies the mountain pass geometry, whereas Lemma 5.4 guarantees that a solution to (1.1) is greater than or equal to the solution to (3.7).

Remark 5.1

By saying ‘\(u>0\) in \(\Omega \),’ we will mean \(\underset{V}{\text {ess}\inf } u>0\) for any compact set \(V\subset \Omega \).

Lemma 5.2

Let \(0<\gamma <1\), \(\lambda ,\mu >0\). Then, the following problem

$$\begin{aligned} \left( a+b\int \limits _{{\mathbb {R}}^N}|u(x)-u(y)|^{p}K(x-y)\hbox {d}x\hbox {d}y\right) {\mathfrak {L}}_p^su= & {} \mu h(x)u^{-\gamma },~\text {in}~\Omega \nonumber \\ u> & {} 0,~\text {in}~\Omega \nonumber \\ u= & {} 0,~\text {in}~{\mathbb {R}}^N\setminus \Omega \end{aligned}$$

has a unique weak solution in \(X_0\). This solution is denoted by \({\underline{u}}_{\mu }\), satisfying \({\underline{u}}_{\mu }\ge \epsilon _{\mu } v_0\) a.e. in \(\Omega \), where \(\epsilon _{\mu }>0\) is a constant.


We follow the proof in [54]. Firstly, we note that an energy functional on \(X_0\) formally corresponding to (5.1) can be defined as follows.

$$\begin{aligned} E(u)&=\frac{a}{p}\Vert u\Vert ^p+\frac{b}{2p}\Vert u\Vert ^{2p}-\frac{\mu }{1-\gamma }\int \limits _{\Omega }h(x)(u^+)^{1-\gamma }\hbox {d}x \end{aligned}$$

for \(u\in X_0\). By the Poincaré inequality, this functional is coercive and continuous on \(X_0\). It follows that E possesses a global minimizer \(u_0\in X_0\). Clearly, \(u_0\ne 0\) since \(E(0)=0>E(\epsilon v_0)\) for sufficiently small \(\epsilon \) and some \(v_0>0\) in \(\Omega \).

Secondly, we have the decomposition \(u=u^+-u^-\). Thus, if \(u_0\) is a global minimizer for E, then so is \(|u_0|\), by \(E(|u_0|)\le E(u_0)\). Clearly enough, the equality holds iff \(u_0^-=0\) a.e. in \(\Omega \). In other words, we need to have \(u_0\ge 0\), i.e., \(u_0\in X_0\) where

$$\begin{aligned} X_0^+=\{u\in X_0:u\ge 0~\text {a.e. in}~\Omega \} \end{aligned}$$

is the positive cone in \(X_0\).

Third, we will show that \(u_0\ge \epsilon v_0>0\) holds a.e. in \(\Omega \) for small enough \(\epsilon \). Observe that

$$\begin{aligned} \begin{aligned} E'(tv_0)|_{t=\epsilon }=&a\epsilon ^{p-1}\Vert v_0\Vert ^p+b\epsilon ^{2p-1}\Vert v_0\Vert ^{2p}-\mu \epsilon ^{-\gamma }\int \limits _{\Omega }h(x)v_0^{1-\gamma }\hbox {d}x<0 \end{aligned} \end{aligned}$$

whenever \(0<\epsilon \le \epsilon _{\mu }\) for some sufficiently small \(\epsilon _{\mu }\). We now show that \(u_0\ge \epsilon _{\mu }v_0\). On the contrary, suppose \(w=(\epsilon _{\mu }v_0-u_0)^+\) does not vanish identically in \(\Omega \). Denote

$$\begin{aligned} \Omega ^+=\{x\in \Omega :w(x)>0\}. \end{aligned}$$

We will analyze the function \(\zeta (t)=E(u_0+tw)\) of \(t\ge 0\). This function is convex owing to its definition over \(X_0^+\) being convex. Further \(\zeta '(t)=\langle E'(u_0+tw),w \rangle \) is nonnegative and nondecreasing for \(t>0\). Consequently, for \(0<t<1\) we have

$$\begin{aligned} \begin{aligned} 0\le \zeta '(1)-\zeta '(t)&=\langle E'(u_0+w)-E'(u_0+tw),w\rangle \\&=\int \limits _{\Omega ^+}E'(u_0+w)\hbox {d}x-\zeta '(t)\\&<0 \end{aligned} \end{aligned}$$

by inequality (5.3) and \(\zeta '(t)\ge 0\) with \(\zeta '(t)\) being nondecreasing for every \(t>0\), which is a contradiction. Therefore, \(w=0\) in \(\Omega \), and hence, \(u_0\ge \epsilon _{\mu }v_0\) a.e. in \(\Omega \).

Finally, the functional E being strictly convex on \(X_0^+\), we conclude that \(u_0\) is the only critical point of E in \(X_0^+\) with the property \(\underset{V}{\text {ess}\inf }u_0>0\) for any compact subset \(V\subset \Omega \). Therefore, we choose \({\underline{u}}_{\mu }=u_0\) in the cutoff functional. \(\square \)

Remark 5.3

We now perform an apriori analysis on a solution (if it exists). Suppose u is a solution to (1.1), then we observe the following

  1. 1.

    \(I(u)=I(|u|)\). This implies that \(u^-=0\) a.e. in \(\Omega \).

  2. 2.

    In fact a solution to (1.1) can be considered to be positive, i.e., \(u>0\) a.e. in \(\Omega \) due to the presence of the singular term.

Thus, without loss of generality, we assume that the solution is positive.

Precisely, we now have the following result.

Lemma 5.4

(Apriori analysis). Fix a \(\mu \in (0,\mu _0)\). Then, a solution of (1.1), say \(u>0\), is such that \(u\ge {\underline{u}}_{\lambda }\) a.e. in \(\Omega \).


Fix \(\mu \in (0,\mu _0)\) and let \(u\in X_0\) be a positive solution to (1.1) and \({\underline{u}}_{\lambda }>0\) be a solution to (5.1). We will show that \(u\ge {\underline{u}}_{\lambda }\) a.e. in \(\Omega \). Thus, we let \({\underline{\Omega }}=\{x\in \Omega :u(x)<{\underline{u}}_{\lambda }(x)\}\) and from the equation satisfied by u, \({\underline{u}}_{\lambda }\), we have

$$\begin{aligned} 0&\le \langle (a+b\Vert {\underline{u}}_{\lambda }\Vert ^p){\mathfrak {L}}_p^s{\underline{u}}_{\lambda }-(a+b\Vert u\Vert ^p){\mathfrak {L}}_p^su,{\underline{u}}_{\lambda }-u\rangle _{{\underline{\Omega }}} +\lambda \int \limits _{{\underline{\Omega }}}g(x)u^{p-1}({\underline{u}}_{\lambda }-u)\hbox {d}x\nonumber \\&\le \mu \int \limits _{{\underline{\Omega }}}h(x)({\underline{u}}_{\lambda }^{-\gamma }-u^{-\gamma })({\underline{u}}_{\lambda }-u)\hbox {d}x\le 0. \end{aligned}$$

Further, we have

$$\begin{aligned} \langle (a+b\Vert {\underline{u}}_{\lambda }\Vert ^p){\mathfrak {L}}_p^s{\underline{u}}_{\lambda }-(a+b\Vert u\Vert ^p){\mathfrak {L}}_p^su,{\underline{u}}_{\lambda }-u\rangle _{{\underline{\Omega }}}&\ge 0. \end{aligned}$$

Hence, from (5.5) and (5.6), we obtain \(u\ge {\underline{u}}_{\lambda }\) a.e. in \(\Omega ^c\). \(\square \)

Lemma 5.5

The redefined functional \({\bar{I}}\) given in (3.8) verifies the mountain pass geometry for \(\mu \in (0,\mu _0)\) with \(\mu _0<\infty \).


By the Sobolev embedding, we obtain

$$\begin{aligned} {\bar{I}}(u)\ge \frac{a}{p}\Vert u\Vert ^p+\frac{b}{2p}\Vert u\Vert ^{2p}-\frac{\lambda \Vert g\Vert _{\infty }C_1}{p}\Vert u\Vert ^p-\frac{\mu \Vert h\Vert _{\infty }C_2}{1-\gamma }\Vert u\Vert ^{1-\gamma }-\int \limits _{\Omega }F(x,u)\hbox {d}x. \end{aligned}$$

where \(C_1, C_2>0\) are uniform constants that are independent of the choice of u and \(F(x,t)=\int \limits _{0}^{t}f(x,\omega )d\omega \). Now, for a pair \((\mu ,r)\), sufficiently small \(\mu >0\) say \(\mu _0\), we have that \(\frac{a}{p}\Vert u\Vert ^p+\frac{b}{2p}\Vert u\Vert ^{2p}-\frac{\mu \Vert h\Vert _{\infty }C_2}{1-\gamma }\Vert u\Vert ^{1-\gamma }>0\) for each \(\mu \in (0,\mu _0)\) and \(\Vert u\Vert =r\) sufficiently small. Define \(a(r)=\frac{a}{p}r^p+\frac{b}{2p}r^{2p}-\frac{\mu \Vert h\Vert _{\infty }C_2}{1-\gamma }r^{1-\gamma }\). Therefore, to sum it up we have

$$\begin{aligned} {\bar{I}}(u)\ge a(r)>0 \end{aligned}$$

for any \(\mu \in (0,\mu _0)\) and for every u such that \(\Vert u\Vert =r\). On the other hand, taking \(u\in X_0\) and \(t\ge 0\) we have \({\bar{I}}(tu)\rightarrow -\infty \) as \(t\rightarrow \infty \). This verifies the second condition of the mountain pass theorem. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, D. Existence and Hölder regularity of infinitely many solutions to a p-Kirchhoff-type problem involving a singular nonlinearity without the Ambrosetti–Rabinowitz (AR) condition. Z. Angew. Math. Phys. 72, 36 (2021). https://doi.org/10.1007/s00033-020-01464-9

Download citation


  • Singularity
  • Non-Ambrosetti–Rabinowitz condition
  • Cerami condition
  • Multiplicity
  • Symmetric Mountain Pass theorem

Mathematics Subject Classification

  • 35J35
  • 35J60