The global convergence of non-isentropic Euler–Maxwell equations via Infinity-Ion-Mass limit


This paper is concerned with the periodic problem to the two-fluid non-isentropic Euler–Maxwell (N-E-M) equations. The equations arises in the modeling of magnetic plasma, in which appear two physical parameters, the mass of an electron \(m_\mathrm{e}\) and the mass of an ion \(m_{\mathrm{i}}\). With the help of methods of asymptotic expansions, we prove the local-in-time convergence of smooth solutions to this problem by setting \(m_\mathrm{e} = 1\) and letting \(m_{\mathrm{i}} \rightarrow +\infty \). Moreover, when the initial data are near constant equilibrium states, by means of uniform energy estimates and compactness arguments, we rigorously prove the infinity-ion-mass convergence of the system for all time. The limit system is the one-fluid N-E-M system.

This is a preview of subscription content, access via your institution.


  1. 1.

    Alì, G., Chen, L., Jüngel, A., Peng, Y.J.: The zero-electron-mass limit in the hydrodynamic model for plasmas. Nonlinear Anal. 72, 4415–4427 (2010)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Alì, G., Chen, L.: The zero-electron-mass limit in the Euler–Poisson system for both well- and ill-prepared initial data. Nonlinearity 24, 2745–2761 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Chen, F.: Introduction to Plasma Physics and Controlled Fusion, vol. 1. Plenum Press, New York (1984)

    Book  Google Scholar 

  4. 4.

    Chen, G.Q., Jerome, J.W., Wang, D.H.: Compressible Euler–Maxwell equations. Transp. Theory Stat. Phys. 29, 311–331 (2000)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

  6. 6.

    Deng, Y., Ionescu, A.D., Pausade, B.: The Euler-Maxwell system for electrons: global solutions in 2D. Arch. Ration. Mech. Anal. (2) 225, 771–871 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Duan, R.J.: Global smooth flows for the compressible Euler–Maxwell system: the relaxation case. J. Hyper. Diff. Equ. 8, 375–413 (2011)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Duan, R.J., Liu, Q.Q., Zhu, C.J.: The Cauchy problem on the compressible two-fluids Euler-Maxwell equations. SIAM J. Math. Anal. 44, 102–133 (2012)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Feng, Y.H., Wang, S., Kawashima, S.: Global existence and asymptotic decay of solutions to the non-isentropic Euler–Maxwell system. Math. Models Methods Appl. Sci. 24, 2851–2884 (2014)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Germain, P., Masmoudi, N.: Global existence for the Euler–Maxwell system. Ann. Sci. éc. Norm. Supér. (4) 47, 469–503 (2014)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Goudon, T., Jüngel, A., Peng, Y.J.: Zero-mass-electrons limits in hydrodynamic models for plasmas. Appl. Math. Lett. 12, 75–79 (1999)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Guo, Y., Ionescu, A.D., Pausade, B.: Global solutions of the Euler–Maxwell two-fluid system in 3D. Ann. Math. 183, 377–498 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Jüngel, A., Peng, Y.J.: A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 83–118 (2000)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. 58, 181–205 (1975)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984)

    Book  Google Scholar 

  17. 17.

    Markowich, P., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Berlin (1990)

    Book  Google Scholar 

  18. 18.

    Peng, Y.J.: Global existence and long-time behavior of smooth solutions of two fluid Euler-Maxwell equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 737–759 (2012)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Peng, Y.J., Wang, S.: Rigorous derivation of incompressible e-MHD equations from compressible Euler–Maxwell equations. SIAM J. Math. Anal. 40, 540–565 (2008)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Peng, Y.J., Wang, S., Gu, Q.L.: Relaxation limit and global existence of smooth solutions of compressible Euler–Maxwell equations. SIAM J. Math. Anal. 43, 944–970 (2011)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Simon, J.: Compact sets in the space \(L^p(0, T; B)\). Ann. Mat. Pura. Appl. 146, 65–96 (1987)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Ueda, Y., Wang, S., Kawashima, S.: Dissipative structure of the regularity type and time asymptotic decay of solutions for the Euler–Maxwell system. SIAM J. Math. Anal. 44, 2002–2017 (2012)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Wasiolek, V.: Uniform global existence and convergence of Euler–Maxwell systems with small parameters. Commun. Pure Appl. Anal. 15, 2007–2021 (2016)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Wang, S., Feng, Y.H., Li, X.: The asymptotic behavior of global smooth solutions of bipolar non-isentropic compressible Euler–Maxwell system for plasma. SIAM J. Math. Anal. 44, 3429–3457 (2012)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Xi, S., Zhao, L.: From bipolar Euler-Poisson system to unipolar Euler-Poisson system in the perspective of mass. arXiv:2002.10867

  26. 26.

    Xu, J.: Global classical solutions to the compressible Euler–Maxwell equations. SIAM J. Math. Anal. 43, 2688–2718 (2011)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Xu, J., Xiong, J., Kawashima, S.: Global well-posedness in critical Besov spaces for two-fluid Euler–Maxwell equations. SIAM J. Math. Anal. 45, 1422–1447 (2013)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Xu, J., Yong, W.A.: Zero-electron-mass limit of hydrodynamic models for plasmas. Proc. R. Soc. Edinburgh Sect. A. 141, 431–447 (2011)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Xu, J., Zhang, T.: Zero-electron-mass limit of Euler–Poisson equations. Discrete Contin. Dyn. Syst. 33, 4743–4768 (2013)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Yang, J., Wang, S., Wang, F.: Approximation of a compressible Euler–Poisson equations by a non-isentropic Euler–Maxwell equations. Appl. Math. Comp. 219, 6142–6151 (2013)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Zhao, L.: The rigorous derivation of unipolar Euler-Maxwell system for electrons from bipolar Euler-Maxwell system by infinity-ion-mass limit. preprint (2020)

Download references


The authors are grateful to the referee for the comments. The first author would like to express his sincere gratitude to Professor Yue-Jun Peng of Université Clermont Auvergne for excellent directions in France. The authors are supported by the the BNSF (1164010, 1132006), NSFC (11771031, 11531010, 11831003), NSF of Qinghai Province (2017-ZJ-908), NSF of Henan Province (162300410084), the Key Research Fund of Henan Province (16A110019), the general project of scientific research project of the Beijing education committee of China(KM202111232008), the research fund of Beijing Information Science and Technology University (2025029).

Author information



Corresponding author

Correspondence to Xin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, YH., Li, X. & Wang, S. The global convergence of non-isentropic Euler–Maxwell equations via Infinity-Ion-Mass limit. Z. Angew. Math. Phys. 72, 28 (2021).

Download citation


  • Two fluids non-isentropic Euler–Maxwell equations
  • The infinity-ion-mass limit
  • Local convergence
  • Global convergence

Mathematics Subject Classification

  • 35Q35
  • 76N10