On the well-posedness for the 2D micropolar Rayleigh–Bénard convection problem


The article is devoted to the study of Cauchy problem to the Rayleigh–Bénard convection model for the micropolar fluid in two dimensions. We first prove the unique local solvability of smooth solution to the system when the system has only velocity dissipation, and then establish a criterion for the breakdown of smooth solutions imposed only the maximum norm of the gradient of scalar temperature field. Finally, we show the global regularity of the system with zero angular viscosity.

This is a preview of subscription content, access via your institution.


  1. 1.

    Adhikari, D., Cao, C., Wu, J.: The 2D Boussinesq equations with vertical viscosity and vertical diffusivity. J. Differential Equations 249, 1078–1088 (2010)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Adhikari, D., Cao, C., Wu, J.: Global regularity results for the 2D Boussinesq equations with vertical dissipation. J. Differential Equations 251, 1637–1655 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Aubin, J.: Un théorème de compacité. Comptes Rendus de l’Académie des Sciences, Paris 256, 5042–5044 (1963)

    MATH  Google Scholar 

  4. 4.

    Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg, (2011)

    Google Scholar 

  5. 5.

    Beale, J., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94, 61–66 (1984)

    MathSciNet  Article  Google Scholar 

  6. 6.

    D. Chae, Global regularity for the \(2\)-D Boussinesq equations with partial viscous terms, Adv. Math., 203 (2006), 497–513

    MathSciNet  Article  Google Scholar 

  7. 7.

    Chae, D., Nam, H.: Local existence and blow-up criterion for the Boussinesq equations. Proc. Roy. Soc. Edinburgh Sect. A, 127(5), 935–946 (1997)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Chemin, J.-Y.: Perfect incompressible fluids. Oxford University Press, New York (1998)

    Google Scholar 

  9. 9.

    J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity, Math. Model. Numer. Anal., 34 (2000), 315–335

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics: An Introduction to Rotating Fluids and to the Navier-Stokes Equations. Oxford University Press, London (2006)

    Google Scholar 

  11. 11.

    R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data, Commun. Math. Phys., 290 (2009), 1–14

    MathSciNet  Article  Google Scholar 

  12. 12.

    Foias, C., Manley, O., Temam, R.: Attractors for the Béenard problem: existence and physical bounds on their fractal dimension. Nonlinear Analysis (TMA) 11(8), 939–967 (1987)

    Article  Google Scholar 

  13. 13.

    Dong, B., Zhang, Z.: Global regularity of the 2D micropolar fluid flows with zero angular viscosity. J. Differential Equations 249, 200–213 (2010)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Dong, B., Li, J., Wu, J.: Global well-posedness and large-time decay for the 2D micropolar equations. J. Differential Equations 262, 3488–3523 (2017)

    MathSciNet  Article  Google Scholar 

  15. 15.

    A.C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18

    MathSciNet  Google Scholar 

  16. 16.

    Hmidi, T., Keraani, S.: On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv. Differential Equations 12, 461–480 (2007)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    T. Hmidi and S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58 (2009), 1591–1618

    MathSciNet  Article  Google Scholar 

  18. 18.

    Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for an Euler-Boussinesq system with critical dissipation. Comm. Partial Differential Equations 36, 420–445 (2011)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for a Navier-Stokes-Boussinesq system with critical dissipation. J. Differential Equations Appl 18, 707–735 (2011)

    Article  Google Scholar 

  20. 20.

    T. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst. A, 12 (2005), 1–12

    MathSciNet  Article  Google Scholar 

  21. 21.

    Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41(7), 891–907 (1988)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Kalita, P., Langa, J., Łukaszewicz, G.: Micropolar meets Newtonian. The Rayleigh-Bénard problem, Physica D. 392, 57–80 (2019)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Miao, C., Wu, J., Zhang, Z.: Littlewood-Paley Theory and Applications to Fluid Dynamics Equations, Monographs on Modern pure mathematics. Science Press, Beijing (2012)

    Google Scholar 

  24. 24.

    Miao, C., Xue, L.: On the global well-posedness of a class of Navier-Stokes-Boussinesq systems. Non. Differ. Equ. Appl. 18, 707–735 (2011)

    Article  Google Scholar 

  25. 25.

    C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation, Commun. Math. Phys., 321 (2013), 33–67

    MathSciNet  Article  Google Scholar 

  26. 26.

    C. Miao and X. Zheng, Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity, J. Math. Pures Appl., 101 (2014), 842–872

    MathSciNet  Article  Google Scholar 

  27. 27.

    A. Popel, S. Regirer and P. Usick, A continuum model of blood flow, Biorheology, 11 (1974), 427–437

    Article  Google Scholar 

  28. 28.

    Tarasinska, A.: Global attractor for heat convection problem in a micropolar fluid. Math. Meth. Appl. Sci. 29, 1215–1236 (2006)

    MathSciNet  Article  Google Scholar 

  29. 29.

    L. Xue, Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations, Math. Methods Appl. Sci., 34 (2011), 1760–1777

    MathSciNet  Article  Google Scholar 

  30. 30.

    Xu, F., Chi, M.: Global regularity for the 2D micropolar Rayleigh-Bnard convection system with the zero diffusivity. Applied Mathematics Letters 108, 106508 (2020)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Fuyi Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by the National Natural Science Foundation of China (11501332, 11771043, 51976112), the Natural Science Foundation of Shandong Province (ZR2015AL007), and Young Scholars Research Fund of Shandong University of Technology.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Qiao, L. & Zhang, M. On the well-posedness for the 2D micropolar Rayleigh–Bénard convection problem. Z. Angew. Math. Phys. 72, 17 (2021). https://doi.org/10.1007/s00033-020-01454-x

Download citation


  • Local well-posedness
  • Micropolar Rayleigh–Bénard convection problem
  • Blow-up criterion
  • Smooth solution
  • Global regularity

Mathematics Subject Classification

  • 75B03
  • 35B45
  • 35B65