Abstract
In this paper, we investigate the initial value problem for the 3D magneto-micropolar fluid equations with mixed partial viscosity. The main purpose of this paper is to establish global well-posedness of classical small solutions. More precisely, we prove that the global stability of perturbations near the steady solution is given by a background magnetic field. The proof is mainly based on the energy estimate and bootstrapping argument.
This is a preview of subscription content, access via your institution.
References
- 1.
Cai, Y., Lei, Z.: Global well-posedness of the incompressible Magnetohydrodynamics. Arch. Ration. Mech. Anal. 228, 969–993 (2018)
- 2.
Cao, C., Wu, J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 226, 1803–1822 (2011)
- 3.
Cheng, J., Liu, Y.: Global regularity of the 2D magnetic micropolar fluid flows with mixed partial viscosity. Comput. Math. Appl. 70, 66–72 (2015)
- 4.
Deng, W., Zhang, P.: Large time behavior of solutions to 3-D MHD system with initial data near equilibrium. Arch. Ration. Mech. Anal. 230, 1017–1102 (2018)
- 5.
Dong, B., Li, J., Wu, J.: Global regularity for the 2D MHD equations with partial hyper-resistivity. Int. Math. Res. Not. IMRN 14, 4261–4280 (2019)
- 6.
Fan, J., Malaikah, H., Monaquel, S., Nakamura, G., Zhou, Y.: Global Cauchy problem of 2D generalized MHD equations. Monatsh. Math. 175, 127–131 (2014)
- 7.
Fan, J., Zhao, K.: Global Cauchy problem of 2D generalized magnetohydrodynamic equations. J. Math. Anal. Appl. 420, 1024–1032 (2014)
- 8.
Gala, S.: Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey–Campanato space. Nonlinear Differ. Equ. Appl. 17, 181–194 (2010)
- 9.
He, C., Huang, X., Wang, Y.: On some new global existence results for 3D magnetohydrodynamic equations. Nonlinearity 27, 343–352 (2014)
- 10.
He, L., Xu, L., Yu, P.: On global dynamics of three dimensional magnetohydrodynamics: nonlinear stability of Alfvén waves. Ann. PDE 4, 5 (2018)
- 11.
Hu, X., Lin, F.: Global existence for two dimensional incompressible Magnetohydrodynamic flows with zero magnetic diffusivity. arXiv: 1405.0082v1
- 12.
Lifschitz, A.: Magnetohydrodynamics and spectral theory. In: Developments in Electromagnetic Theory and Applications, Vol. 4. Kluwer Academic Publishers Group, Dordrecht (1989)
- 13.
Lin, F., Xu, L., Zhang, P.: Global small solutions to 2-D incompressible MHD system. J. Differ. Equ. 259, 5440–5485 (2015)
- 14.
Lin, F., Zhang, P.: Global small solutions to an MHD-type system: the three-dimensional case. Commun. Pure Appl. Math. 67, 531–580 (2014)
- 15.
Lin, Y., Zhang, H., Zhou, Y.: Global smooth solutions of MHD equations with large data. J. Differ. Equ. 261, 102–112 (2016)
- 16.
Lei, Z.: On axially symmetric incompressible Magnetohydrodynamics in three dimensions. J. Differ. Equ. 259, 3202–3215 (2015)
- 17.
Miao, C., Yuan, B., Zhang, B.: Well-posedness for the incompressible magnetohydrodynamics system. Math. Methods Appl. Sci. 30, 961–976 (2007)
- 18.
Ortega-Torres, E., Rojas-Medar, M.: Magneto-micropolar fluid motion: global existence of strong solutions. Abstr. Appl. Anal. 4, 109–125 (1999)
- 19.
Regmi, D., Wu, J.: Global regularity for the 2D magneto-micropolar equations with partial dissipation. J. Math. Study 49, 169–194 (2016)
- 20.
Ren, X., Wu, J., Xiang, Z., Zhang, Z.: Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J. Funct. Anal. 267, 503–541 (2014)
- 21.
Rojas-Medar, M.: Magneto-micropolar fluid motion: existence and uniqueness of strong solutions. Math. Nachr. 188, 307–319 (1997)
- 22.
Rojas-Medar, M., Boldrini, J.: Magneto-micropolar fluid motion: existence of weak solutions. Rev. Mat. Complut. 11, 443–460 (1998)
- 23.
Shang, H., Gu, C.: Global regularity and decay estimates for 2D magnetomicropolar equations with partial dissipation. Z. Angew. Math. Phys. 70, 85 (2019)
- 24.
Shang, H., Zhao, J.: Global regularity for 2D magneto-micropolar equations with only micro-rotational velocity dissipation and magnetic diffusion. Nonlinear Anal. 150, 194–209 (2017)
- 25.
Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (2006)
- 26.
Wang, F., Wang, K.: Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion. Nonlinear Anal. Real World Appl. 14, 526–535 (2013)
- 27.
Wang, F.: On global regularity of incompressile MHD equations in \(\mathbb{R}^3\). J. Math. Anal. Appl. 454, 936–941 (2017)
- 28.
Wang, Y.-Z., Wang, Y.: Blow-up criterion for two-dimensional magneto-micropolar fluid equations with partial viscosity. Math. Methods Appl. Sci. 34, 2125–2135 (2011)
- 29.
Wang, Y.-Z., Wang, K.: Global well-posedness of the three dimensional magnetohydrodynamics equations. Nonlinear Anal. Real World Appl. 17, 245–251 (2014)
- 30.
Wang, Y.-Z., Li, P.: Global existence of three dimensional incompressible MHD flows. Math. Methods Appl. Sci. 39, 4246–4256 (2016)
- 31.
Wang, Y.: Asymptotic decay of solutions to 3D MHD equations. Nonlinear Anal. 132, 115–125 (2016)
- 32.
Wang, Y.X.: Blow-up criteria of smooth solutions to the three-dimensional magneto-micropolar fluid equations. Bound. Value Probl. 118, 10 (2015)
- 33.
Wang, Y., Wang, K.: Global well-posedness of 3D magneto-micropolar fluid equations with mixed partial viscosity. Nonlinear Anal. Real World Appl. 33, 348–362 (2017)
- 34.
Wang, Y., Gu, L.: Global regularity of 3D magneto-micropolar fluid equations. Appl. Math. Lett. 99, 105980 (2020)
- 35.
Wei, D., Zhang, Z.: Global well-posedness of the MHD equations in a homogeneous magnetic field. Anal. PDE 10, 1361–1406 (2017)
- 36.
Wu, J., Wu, Y.: Global small solutions to the compressible 2D magnetohydrodynamic system without magnetic diffusion. Adv. Math. 310, 759–888 (2017)
- 37.
Wu, J., Zhu, Y.: Global solution of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium. arXiv:1906.05054v1
- 38.
Xu, F.: Regularity criterion of weak solution for the 3D magneto-micropolar fluid equations in Besov spaces. Commun. Nonlinear Sci. 17, 2426–2433 (2012)
- 39.
Yuan, B.: Regularity of weak solutions to magneto-micropolar fluid equations. Acta Math. Sci. 30, 1469–1480 (2010)
- 40.
Yuan, B., Zhao, J.: Global regularity of 2D almost resistive MHD equations. Nonlinear Anal. Real World Appl. 41, 53–65 (2018)
- 41.
Yuan, J.: Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations. Math. Methods Appl. Sci. 31, 1113–1130 (2008)
- 42.
Zhang, T.: An elementary proof of the global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system. arXiv:1404.5681v1
- 43.
Zhang, Z., Yao, Z., Wang, X.: A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel–Lizorkin spaces. Nonlinear Anal. 74, 2220–2225 (2011)
- 44.
Zhang, Z., Dong, B., Jia, Y.: Remarks on the global regularity and time decay of the 2D MHD equations with partial dissipation. Math. Methods Appl. Sci. 42, 3388–3399 (2019)
- 45.
Zhou, Y., Fan, J.: Global Cauchy problem for a 2D Leray-\(\alpha \)-MHD model with zero viscosity. Nonlinear Anal. 74, 1331–1335 (2011)
Acknowledgements
This work was supported in part by the NNSF of China (Grant No. 11871212) and the Basic Research Project of Key Scientific Research Project Plan of Universities in Henan Province (Grant No. 20ZX002).
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, Y., Li, W. Global well-posedness of 3D magneto-micropolar fluid equations with mixed partial viscosity near an equilibrium. Z. Angew. Math. Phys. 72, 19 (2021). https://doi.org/10.1007/s00033-020-01453-y
Received:
Revised:
Accepted:
Published:
Keywords
- Magneto-micropolar fluid equations
- Mixed partial viscosity
- Global classical solutions
Mathematics Subject Classification
- 35L30
- 35B40