New decay results for a viscoelastic-type Timoshenko system with infinite memory


This paper is concerned with the following memory-type Timoshenko system

$$\begin{aligned} {\left\{ \begin{array}{ll} \rho _1 \varphi _{tt}-K(\varphi _x+\psi )_x =0,\\ \rho _2\psi _{tt}-b\psi _{xx}+K(\varphi _x+\psi )+\displaystyle \int \limits _0^{+\infty } g(s)\psi _{xx}(t-s){\mathrm{d}}s=0,\\ \end{array}\right. } \end{aligned}$$

with Dirichlet boundary conditions, where g is a positive nonincreasing function satisfying, for some nonnegative functions \(\xi \) and G,

$$\begin{aligned}g'(t)\le -\xi (t)G(g(t)),\qquad \forall t\ge 0.\end{aligned}$$

Under appropriate conditions on \(\xi \) and G, we establish some new decay results that generalize and improve many earlier results in the literature such as Mustafa (Math Methods Appl Sci 41(1): 192–204, 2018), Messaoudi et al. (J Integral Equ Appl 30(1): 117–145, 2018) and Guesmia (Math Model Anal 25(3): 351–373, 2020). We consider the equal speeds of propagation case, as well as the nonequal-speed case. Moreover, we delete some assumptions on the boundedness of initial data used in many earlier papers in the literature.

This is a preview of subscription content, access via your institution.


  1. 1.

    Mustafa, M.I.: Optimal decay rates for the viscoelastic wave equation. Math. Methods Appl. Sci. 41(1), 192–204 (2018)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Messaoudi, S.A., Hassan, J.H., et al.: General and optimal decay in a memory-type Timoshenko system. J. Integral Equ. Appl. 30(1), 117–145 (2018)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Guesmia, A.: New general decay rates of solutions for two viscoelastic wave equations with infinite memory. Math. Model. Anal. 25(3), 351–373 (2020)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Timoshenko, S.P.: Lxvi. on the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41(245), 744–746 (1921)

    Article  Google Scholar 

  5. 5.

    Júnior, DdSA, Santos, M., Rivera, J.M.: Stability to 1-d thermoelastic Timoshenko beam acting on shear force. Z. Angew. Math. Phys. 65(6), 1233–1249 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Apalara, T.A., Messaoudi, S.A., Keddi, A.A.: On the decay rates of Timoshenko system with second sound. Math. Methods Appl. Sci. 39(10), 2671–2684 (2016)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Ayadi, M.A., Bchatnia, A., Hamouda, M., Messaoudi, S.: General decay in a Timoshenko-type system with thermoelasticity with second sound. Adv. Nonlinear Anal. 4(4), 263–284 (2015)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Feng, B.: On a semilinear Timoshenko–Coleman–Gurtin system: quasi-stability and attractors. Discrete Contin. Dyn. Syst. A 37(9), 4729–4751 (2017)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Feng, B., Yang, X.-G.: Long-time dynamics for a nonlinear Timoshenko system with delay. Appl. Anal. 96(4), 606–625 (2017)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Guesmia, A., Messaoudi, S.A., Soufyane, A.: Stabilization of a linear Timoshenko system with infinite history and applications to the Timoshenko-heat systems. Electron. J. Differ. Equ. 193, 1–45 (2012)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Guesmia, A., Soufyane, A.: On the stability of Timoshenko-type systems with internal frictional dampings and discrete time delays. Appl. Anal. 96(12), 2075–2101 (2017)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Kafini, M., Messaoudi, S.A., Mustafa, M.I.: Energy decay result in a Timoshenko-type system of thermoelasticity of type III with distributive delay. J. Math. Phys. 54(10), 1–14 (2013)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Kafini, M., Messaoudi, S.A., Mustafa, M.I., Apalara, T.: Well-posedness and stability results in a Timoshenko-type system of thermoelasticity of type III with delay. Z. Angew. Math. Phys. 66(4), 1499–1517 (2015)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Malacarne, A., Rivera, J.E.M.: Lack of exponential stability to Timoshenko system with viscoelastic Kelvin–Voigt type. Z. Angew. Math. Phys. 67(3), 1–10 (2016)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Messaoudi, S.A., Said-Houari, B.: Uniform decay in a Timoshenko-type system with past history. J. Math. Anal. Appl. 360(2), 459–475 (2009)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Rivera, J.E.M., Sare, H.D.F.: Stability of Timoshenko systems with past history. J. Math. Anal. Appl. 339(1), 482–502 (2008)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Tian, X., Zhang, Q.: Stability of a Timoshenko system with local Kelvin–Voigt damping. Z. Angew. Math. Phys. 68(20)(1), 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Ammar-Khodja, F., Benabdallah, A., Rivera, J.M., Racke, R.: Energy decay for Timoshenko systems of memory type. J. Differ. Equ. 194(1), 82–115 (2003)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Guesmia, A., Messaoudi, S.A.: On the control of a viscoelastic damped Timoshenko-type system. Appl. Math. Comput. 206(2), 589–597 (2008)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Messaoudi, S.A., Mustafa, M.I.: A stability result in a memory-type Timoshenko system. Dyn. Syst. Appl. 18(3), 457 (2009)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Giorgi, C., Rivera, J.E.M., Pata, V.: Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl. 260(1), 83–99 (2001)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Conti, M., Pata, V.: Weakly dissipative semilinear equations of viscoelasticity. Commun. Pure Appl. Anal. 4(4), 705–720 (2005)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Appleby, J.A., Fabrizio, M., Lazzari, B., Reynolds, D.W.: On exponential asymptotic stability in linear viscoelasticity. Math. Models Methods Appl. Sci. 16(10), 1677–1694 (2006)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Pata, V.: Stability and exponential stability in linear viscoelasticity. Milan J. Math. 77(1), 333–360 (2009)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Guesmia, A.: Asymptotic stability of abstract dissipative systems with infinite memory. J. Math. Anal. Appl. 382(2), 748–760 (2011)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Guesmia, A., Messaoudi, S.A.: A general decay result for a viscoelastic equation in the presence of past and finite history memories. Nonlinear Anal. Real World Appl. 13(1), 476–485 (2012)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Guesmia, A., Messaoudi, S.A.: A general stability result in a Timoshenko system with infinite memory: a new approach. Math. Methods Appl. Sci. 3(37), 384–392 (2014)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Al-Mahdi, A.M.: Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity. Bound. Value Probl. 2020(1), 1–20 (2020)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Al-Mahdi, A.M.: General stability result for a viscoelastic plate equation with past history and general kernel. J. Math. Anal. Appl. 490(124216), 1–19 (2020)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Guesmia, A., Tatar, N.-E.: Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay (2015)

  31. 31.

    Guesmia, A., Messaoudi, S.: A new approach to the stability of an abstract system in the presence of infinite history. J. Math. Anal. Appl. 416(1), 212–228 (2014)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Youkana, A.: Stability of an abstract system with infinite history. arXiv preprint arXiv:1805.07964 (2018)

  33. 33.

    Al-Mahdi, A .M., Al-Gharabli, M .M.: New general decay results in an infinite memory viscoelastic problem with nonlinear damping. Bound. Value Probl. 2019(140)(1), 1–15 (2019)

    MathSciNet  Google Scholar 

  34. 34.

    Guesmia, A.: Asymptotic behavior for coupled abstract evolution equations with one infinite memory. Appl. Anal. 94(1), 184–217 (2015)

    MathSciNet  Article  Google Scholar 

  35. 35.

    Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37(4), 297–308 (1970)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Arnol’d, V.I.: Mathematical Methods of Classical Mechanics, vol. 60. Springer, Berlin (2013)

    Google Scholar 

  37. 37.

    Guesmia, A., Messaoudi, S.A.: On the stabilization of Timoshenko systems with memory and different speeds of wave propagation. Appl. Math. Comput. 219(17), 9424–9437 (2013)

    MathSciNet  MATH  Google Scholar 

Download references


We thank KFUPM and University of Sharjah for their continuous support. The authors also thank the referee for her/his very careful reading and valuable comments. This work was initiated and finished during the visits of the third author to KFUPM in December 2018–January 2019 and December 2019–January 2020. This work is funded by KFUPM under Project #SB181018.

Author information



Corresponding author

Correspondence to Adel M. Al-Mahdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Mahdi, A.M., Al-Gharabli, M.M., Guesmia, A. et al. New decay results for a viscoelastic-type Timoshenko system with infinite memory. Z. Angew. Math. Phys. 72, 22 (2021).

Download citation


  • Timoshenko system
  • General decay
  • Infinite memory
  • Relaxation function
  • Viscoelasticity

Mathematics Subject Classification

  • 35B37
  • 35L55
  • 74D05
  • 93D15
  • 93D20