New approach to interface crack problems in transversely isotropic materials


The novelty of the approach contains several aspects: the method of derivation of the governing equations, the form and number of equations, the optimal choice of elastic constants. While majority of published articles derives the governing equations from the Green’s function for the compound space and the use of the reciprocal theorem, we use the combination of Green’s functions for 2 different half-spaces and Fourier transform. The usual approach leads to 3 hypersingular integral equations, we arrive at 2 integro-differential equations (one of them being complex). While the coefficients of the governing equations in existing publications are presented in terms of the results of the solution of a set of linear algebraic equations and are too cumbersome to be written explicitly in terms of the basic elastic constants, our choice of the basic constants leads to quite elegant explicit expressions for these coefficients and reveals certain symmetry, which was noticed only numerically in previous publications. The new form of the governing equations allows us to obtain an exact closed form solution for an axisymmetric interface crack problem by elementary means. The same method can be applied to obtain the exact solution for a non-axisymmetric problem. A comparison is made with the existing exact solutions and some are shown to be incorrect.

This is a preview of subscription content, access via your institution.


  1. 1.

    Fabrikant, V.I.: Contact and Crack Problems in Linear Elasticity. (2010)

  2. 2.

    Fabrikant, V.I.: Bonded contact and general crack problems in generalized materials and their relationships. Meccanica 53, 2709–2723 (2018)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Kassir, M.K., Bregman, A.M.: The stress intensity factor for a penny-shaped crack between two dissimilar materials. J. Appl. Mech. 39, 308–310 (1972)

    Article  Google Scholar 

  4. 4.

    Keer, L.M.: Mixed boundary-value problems for an elastic half-space. Proc. Camb. Philos. Soc. 63, 1379–1386 (1967)

    Article  Google Scholar 

  5. 5.

    Kryvyi, O.F.: Circular interface crack in the inhomogeneous transversely isotropic space. Mater. Sci. 47(6), 726–736 (2012)

    Article  Google Scholar 

  6. 6.

    Lowengrub, M., Sneddon, I.N.: The effect of shear on a penny-shaped crack at the interface of an elastic half-space and a rigid foundation. Int. J. Eng. Sci. 10, 899–913 (1972)

    Article  Google Scholar 

  7. 7.

    Lowengrub, M., Sneddon, I.N.: The effect of internal pressure on a penny-shaped crack at the interface of two bonded elastic half-spaces. Int. J. Eng. Sci. 12, 387–396 (1974)

    Article  Google Scholar 

  8. 8.

    Lowengrub, M., Walton, J.R.: A note on the asymptotic expansion of an integral occurring in the analysis of certain bi-media crack problems. Int. J. Eng. Sci. 22, 707–710 (1984)

    Article  Google Scholar 

  9. 9.

    Mossakovskii, V.M., Rybka, M.T.: Generalization of the Griffith–Sneddon criterion to the case of inhomogeneous body. Prikl. Math. Mekh 28(6), 1061–1069 (1964)

    Google Scholar 

  10. 10.

    Saxena, H.S., Dhaliwal, R.S.: A penny-shaped crack at the interface of two bonded dissimilar transversely isotropic elastic half-spaces. Eng. Fract. Mech 37(4), 891–899 (1990)

    Article  Google Scholar 

  11. 11.

    Tikhomirov, V.V.: An interfacial crack in a transversely isotropic composite medium. J. Appl. Math. Mekh. 60(5), 833–838 (1996)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Willis, J.R.: The penny-shaped crack on an interface. Q. J. Mech. Appl. Math. 25, 367–385 (1972)

    Article  Google Scholar 

  13. 13.

    Zhao, M.H., Li, D.X., Shen, Y.P.: Interfacial crack analysis in three-dimensional transversely isotropic bi-materials by boundary integral equation method. Appl. Math. Mech. Engl. Ed. 26(12), 1539–1546 (2005)

    Article  Google Scholar 

Download references


The author expresses his gratitude to his son Isaac for help in various computations and for preparation of this article for publication.

Author information



Corresponding author

Correspondence to V. I. Fabrikant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Appendix 1

We present below the table of Fourier integral transforms, used in this article.

$$\begin{aligned}&\int \limits _{-\infty }^{\infty }\int \limits _{-\infty }^{\infty } \frac{1}{\sqrt{\xi _{1}^{2}+\xi _{2}^{2}}}\exp (-\zeta z)\exp [-i(x\xi _{1}+y\xi _{2})]\mathrm{d}\xi _{1}\mathrm{d}\xi _{2}=\frac{2\pi }{R_{0}}, \end{aligned}$$
$$\begin{aligned}&\int \limits _{-\infty }^{\infty }\int \limits _{-\infty }^{\infty }\frac{i\xi _{2}}{(\xi _{1}^{2}+\xi _{2}^{2})} \exp (-\zeta z)\exp [-i(x\xi _{1}+y\xi _{2})]\mathrm{d}\xi _{1}\mathrm{d}\xi _{2}= \frac{2\pi y}{R_{0}(R_{0}+z_{g})}, \end{aligned}$$
$$\begin{aligned}&\int \limits _{-\infty }^{\infty }\int \limits _{-\infty }^{\infty }\frac{i\xi _{1}}{(\xi _{1}^{2} +\xi _{2}^{2})}\exp (-\zeta z)\exp [-i(x\xi _{1}+y\xi _{2})]\mathrm{d}\xi _{1}\mathrm{d}\xi _{2}=\frac{2\pi x}{R_{0}(R_{0}+z_{g})}, \end{aligned}$$
$$\begin{aligned}&\int \limits _{-\infty }^{\infty }\int \limits _{-\infty }^{\infty }\frac{\xi _{1}^{2}}{(\xi _{1}^{2} +\xi _{2}^{2})^{3/2}}\exp (-\zeta z) \exp [-i(x\xi _{1}+y\xi _{2})]\mathrm{d}\xi _{1}\mathrm{d}\xi _{2} =\pi \left[ \frac{1}{R_{0}}+\frac{y^{2}-x^{2}}{R_{0}(R_{0}+z_{g})^{2}}\right] , \end{aligned}$$
$$\begin{aligned}&\int \limits _{-\infty }^{\infty }\int \limits _{-\infty }^{\infty } \frac{\xi _{2}^{2}}{(\xi _{1}^{2}+\xi _{2}^{2})^{3/2}}\exp (-\zeta z)\exp [-i(x\xi _{1}+y\xi _{2})]\mathrm{d}\xi _{1}\mathrm{d}\xi _{2} =\pi \left[ \frac{1}{R_{0}}-\frac{y^{2}-x^{2}}{R_{0}(R_{0}+z_{g})^{2}}\right] , \end{aligned}$$
$$\begin{aligned}&\int \limits _{-\infty }^{\infty }\int \limits _{-\infty }^{\infty }\frac{\xi _{1} \xi _{2}}{(\xi _{1}^{2}+\xi _{2}^{2})^{3/2}}\exp (-\zeta z) \exp [-i(x\xi _{1}+y\xi _{2})]\mathrm{d}\xi _{1}\mathrm{d}\xi _{2}=-\frac{2\pi xy}{R_{0}(R_{0}+z_{g})^{2}}, \end{aligned}$$

The following notation was introduced in the formulas above:

$$\begin{aligned} \zeta =\frac{1}{\gamma }\sqrt{\xi _{1}^{2}+\xi _{2}^{2}},\qquad R_{0} =\sqrt{z_{g}^{2}+x^{2}+y^{2}},\qquad z_{g}=\frac{z}{\gamma }. \end{aligned}$$

Appendix 2

We present below the solutions of the set of linear algebraic equations (5863)

$$\begin{aligned} A_{11}^{+}= & {} \frac{A_{1}^{+}}{D}[-(c_{44}^{-})^{2}(1+m_{1}^{-}) (1+m_{2}^{-})(m_{2}^{+}\gamma _{1}^{+}+m_{1}^{+}\gamma _{2}^{+}) (\gamma _{1}^{-}-\gamma _{2}^{-})\nonumber \\&-(c_{44}^{+})^{2}(1+m_{1}^{+}) (1+m_{2}^{+})(m_{2}^{-}\gamma _{1}^{-}-m_{1}^{-}\gamma _{2}^{-}) (\gamma _{1}^{+}+\gamma _{2}^{+}) \nonumber \\&+c_{44}^{+}c_{44}^{-}[(m_{1}^{+}-m_{2}^{+})(m_{1}^{-}-m_{2}^{-}) (\gamma _{1}^{+}\gamma _{2}^{+}-\gamma _{1}^{-}\gamma _{2}^{-})\nonumber \\&+2(1+m_{1}^{+}) (1+m_{1}^{-})(m_{2}^{+}\gamma _{1}^{+}+\gamma _{2}^{+})(m_{2}^{-}\gamma _{1}^{-} -\gamma _{2}^{-})]], \end{aligned}$$
$$\begin{aligned} A_{21}^{+}= & {} 2\gamma _{2}^{+}\frac{A_{1}^{+}}{D}[(c_{44}^{-})^{2}m_{1}^{+} (1+m_{1}^{-})(1+m_{2}^{-})(\gamma _{1}^{-}-\gamma _{2}^{-})+(c_{44}^{+})^{2} (1+m_{1}^{+})^{2}(m_{2}^{-}\gamma _{1}^{-}-m_{1}^{-}\gamma _{2}^{-}) \nonumber \\&+c_{44}^{+}c_{44}^{-}(1+m_{1}^{+})^{2}(1+m_{2}^{-})(m_{1}^{-}\gamma _{2}^{-} -\gamma _{1}^{-})], \end{aligned}$$
$$\begin{aligned} A_{12}^{+}= & {} 2\gamma _{1}^{+}\frac{A_{2}^{+}}{D}[-(c_{44}^{-})^{2}m_{2}^{+}(1+m_{1}^{-}) (1+m_{2}^{-})(\gamma _{1}^{-}-\gamma _{2}^{-})\nonumber \\&-(c_{44}^{+})^{2}(1+m_{2}^{+})^{2}(m_{2}^{-} \gamma _{1}^{-}-m_{1}^{-}\gamma _{2}^{-})\nonumber \\&+c_{44}^{+}c_{44}^{-}(1+m_{2}^{+})^{2}(1+m_{2}^{-})(\gamma _{1}^{-}-m_{1}^{-} \gamma _{2}^{-})], \end{aligned}$$
$$\begin{aligned} A_{22}^{+}= & {} \frac{A_{2}^{+}}{D}[(c_{44}^{-})^{2}(1+m_{1}^{-})(1+m_{2}^{-})(m_{2}^{+} \gamma _{1}^{+}+m_{1}^{+}\gamma _{2}^{+})(\gamma _{1}^{-}-\gamma _{2}^{-})\nonumber \\&+(c_{44}^{+})^{2} (1+m_{1}^{+})(1+m_{2}^{+})(m_{2}^{-}\gamma _{1}^{-}-m_{1}^{-} \gamma _{2}^{-}) (\gamma _{1}^{+}+\gamma _{2}^{+}) \nonumber \\&+c_{44}^{+}c_{44}^{-}[(m_{1}^{+}-m_{2}^{+})(m_{1}^{-}-m_{2}^{-}) (\gamma _{1}^{+}\gamma _{2}^{+}-\gamma _{1}^{-}\gamma _{2}^{-})\nonumber \\&-2(m_{1}^{+}+1) (m_{1}^{-}+1)(m_{2}^{+}\gamma _{1}^{+}+\gamma _{2}^{+}) (m_{2}^{-}\gamma _{1}^{-} -\gamma _{2}^{-})]], \end{aligned}$$
$$\begin{aligned} A_{11}^{-}= & {} -2c_{44}^{+}(m_{1}^{+}-m_{2}^{+})\gamma _{1}^{-}\frac{A_{1}^{+}}{D} [c_{44}^{-}(m_{2}^{-}+1)(m_{1}^{+}\gamma _{2}^{+}-\gamma _{2}^{-})-c_{44}^{+} (m_{1}^{+}+1)(m_{2}^{-}\gamma _{2}^{+}-\gamma _{2}^{-})], \end{aligned}$$
$$\begin{aligned} A_{21}^{-}= & {} 2c_{44}^{+}(m_{1}^{+}-m_{2}^{+})\gamma _{2}^{-}\frac{A_{1}^{+}}{D} [c_{44}^{-}(m_{1}^{-}+1)(m_{1}^{+}\gamma _{2}^{+}-\gamma _{1}^{-})-c_{44}^{+} (m_{1}^{+}+1)(m_{1}^{-}\gamma _{2}^{+}-\gamma _{1}^{-})], \end{aligned}$$
$$\begin{aligned} A_{12}^{-}= & {} -2c_{44}^{+}(m_{1}^{+}-m_{2}^{+})\gamma _{1}^{-}\frac{A_{2}^{+}}{D} [c_{44}^{-}(m_{2}^{-}+1)(m_{2}^{+}\gamma _{1}^{+}-\gamma _{2}^{-})-c_{44}^{+} (m_{2}^{+}+1)(m_{2}^{-}\gamma _{1}^{+}-\gamma _{2}^{-})], \end{aligned}$$
$$\begin{aligned} A_{22}^{-}= & {} 2c_{44}^{+}(m_{1}^{+}-m_{2}^{+})\gamma _{2}^{-}\frac{A_{2}^{+}}{D} [c_{44}^{-}(m_{1}^{-}+1)(m_{2}^{+}\gamma _{1}^{+}-\gamma _{1}^{-})-c_{44}^{+} (m_{2}^{+}+1)(m_{1}^{-}\gamma _{1}^{+}-\gamma _{1}^{-})], \end{aligned}$$
$$\begin{aligned} D= & {} -(c_{44}^{-})^{2}(1+m_{1}^{-})(1+m_{2}^{-})(m_{2}^{+}\gamma _{1}^{+}-m_{1}^{+} \gamma _{2}^{+})(\gamma _{1}^{-}-\gamma _{2}^{-})\nonumber \\&-(c_{44}^{+})^{2}(1+m_{1}^{+}) (1+m_{2}^{+})(m_{2}^{-}\gamma _{1}^{-}-m_{1}^{-}\gamma _{2}^{-})(\gamma _{1}^{+}-\gamma _{2}^{+}) \nonumber \\&+c_{44}^{+}c_{44}^{-}[(m_{1}^{+}-m_{2}^{+})(m_{1}^{-}-m_{2}^{-})(\gamma _{1}^{+} \gamma _{2}^{+}+\gamma _{1}^{-}\gamma _{2}^{-})\nonumber \\&+2(1+m_{1}^{+})(1+m_{1}^{-})(m_{2}^{+} \gamma _{1}^{+}-\gamma _{2}^{+})(m_{2}^{-}\gamma _{1}^{-}-\gamma _{2}^{-})],\nonumber \\ \end{aligned}$$

The solutions for \(B_{kj}\) are exactly the same as for \(A_{kj}\) given above, except that the coefficients \(A_{k}^{+}\) should be replaced by \(-B_{k}^{+}\) for \(\{j,k\}=1,2\). The solutions for \(B_{3}\) are

$$\begin{aligned} B_{3}^{-}=\frac{i\gamma _{3}^{+}\gamma _{3}^{-}}{4\pi (c_{44}^{-}\gamma _{3}^{+} +c_{44}^{+}\gamma _{3}^{-})},\qquad B_{3p}^{+}=\frac{i\gamma _{3}^{+}(c_{44}^{+} \gamma _{3}^{-}-c_{44}^{-}\gamma _{3}^{+})}{8\pi c_{44}^{+}(c_{44}^{-}\gamma _{3}^{+} +c_{44}^{+}\gamma _{3}^{-})}. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fabrikant, V.I. New approach to interface crack problems in transversely isotropic materials. Z. Angew. Math. Phys. 72, 86 (2021).

Download citation


  • Interface crack problems
  • Integral equation
  • Exact solution
  • Transversely isotropic material

Mathematics Subject Classification

  • 74B05
  • 31B10
  • 45A05