Spectrum of the Dirichlet Laplacian in sheared waveguides


Let \(\Omega \subset {\mathbb {R}}^3\) be a sheared waveguide, i.e., \(\Omega \) is built by translating a cross section in a constant direction along an unbounded spatial curve. Consider \(-\Delta _{\Omega }^D\) the Dirichlet Laplacian operator in \(\Omega \). Under the condition that the tangent vector of the reference curve admits a finite limit at infinity, we find the essential spectrum of \(-\Delta _{\Omega }^D\). Then, we state sufficient conditions that give rise to a non-empty discrete spectrum for \(-\Delta _{\Omega }^D\); in particular, we show that the number of discrete eigenvalues can be arbitrarily large since the waveguide is thin enough.

This is a preview of subscription content, access via your institution.


  1. 1.

    Borisov, D., Exner, P., Gadyl’shin, R., Krejčířik, D.: Bound states in weakly deformed strips and layers. Ann. H. Poincaré 2, 553–572 (2001)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Borisov, D., Exner, P., Gadyl’shin, R.: Geometric coupling thresholds in a two-dimensional strip. J. Math. Phys. 43, 6265–6278 (2002)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bouchitté, G., Mascarenhas, M.L., Trabucho, L.: On the curvature and torsion effects in one-dimensional waveguides. ESAIM, Control Optim. Calc. Var. 13, 793–808 (2007)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Briet, P., Abdou-Soimadou, H., Krejčířik, D.: Spectral analysis of sheared nanoribbons. Z. Angew. Math. Phys. 70, 48 (2019)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Briet, P., Hammedi, H., Krejčířik, D.: Hardy inequalities in globally twisted waveguides. Lett. Math. Phys. 105, 939–958 (2015)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Briet, P., Kovařík, H., Raikov, G., Soccorsi, E.: Eigenvalue asymptotics in a twisted waveguide. Commun. Partial Differ. Equ. 34, 818–836 (2009)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Bruneau, V., Miranda, P., Parra, D., Popoff, N.: Eigenvalue and resonance asymptotics in perturbed periodically twisted tubes: twisting versus bending. Ann. H. Poincaré 21, 377–403 (2020)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bruneau, V., Miranda, P., Popoff, N.: Resonances near thresholds in slightly twisted waveguides. Proc. Am. Math. Soc. 146, 4801–4812 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Chenaud, B., Duclos, P., Freitas, P., Krejčířik, D.: Geometrically induced discrete spectrum in curved tubes. Differ. Geom. Appl. 23, 95–105 (2005)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Clark, I.J., Bracken, A.J.: Bound states in tubular quantum waveguides with torsion. J. Phys. A: Math. Gen. 29, 4527 (1996)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Davies, E.B.: Spectral Theory and Differential Operators. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  12. 12.

    Duclos, P., Exner, P., Krejčířik, D.: Bound states in curved quantum layers. Commun. Math. Phys. 223, 13–28 (2001)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Duclos, P., Exner, P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 07, 73–102 (1995)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Ekholm, T., Kovarik, H., Krejčířik, D.: A Hardy inequality in twisted waveguides. Arch. Ration. Mech. Anal. 188, 245–264 (2008)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Exner, P., Kovařík, H.: Quantum Waveguides. Springer, Berlin (2015)

    Book  Google Scholar 

  16. 16.

    Exner, P., Kovařík, H.: Spectrum of the Schödinger operator in a perturbed periodically twisted tube. Lett. Math. Phys. 73, 183–192 (2005)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Exner, P., Šeba, P.: Bound states in curved quantum waveguides. J. Math. Phys. 30, 2574–2580 (1989)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Freitas, P., Krejčířik, D.: Instability results for the damped wave equation in unbounded domains. J. Differ. Equ. 211(1), 168–186 (2005)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Friedlander, L.: Absolute continuity of the spectra of periodic waveguides. Contemp. Math. 339, 37–42 (2003)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)

    MATH  Google Scholar 

  21. 21.

    Goldstone, J., Jaffe, R.L.: Bound states in twisting tubes. Phys. Rev. B 45, 14100 (1992)

    Article  Google Scholar 

  22. 22.

    Grushin, V.V.: Asymptotic behavior of the eigenvalues of the Schrödinger operator with transversal potential in a weakly curved infinite cylinder. Math. Notes 77, 606–613 (2005)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Krejčířik, D.: Waveguides with asymptotically diverging twisting. Appl. Math. Lett. 46, 7–10 (2015)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Krejčířik, D.: Twisting versus bending in quantum waveguides, Analysis on Graphs and Applications (Cambridge 2007). In: Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, RI, 77, 617–636 (2008)

  25. 25.

    Krejčířik, D., de Aldecoa, R.T.: Ruled strips with asymptotically diverging twisting. Ann. H. Poincaré 19, 2069–2086 (2018)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Krejčířik, D., de Aldecoa, R.T.: The nature of the essential spectrum in curved quantum waveguides. J. Phys. A 37, 5449–5466 (2004)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Krejčířik, D., Kříž, J.: On the spectrum of curved planar waveguides. Publ. RIMS Kyoto Univ. 41, 757–791 (2005)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Kovarik, H., Sacchetti, A.: Resonances in twisted quantum waveguides. J. Phys. A 40, 8371–8384 (2007)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Renger, W., Bulla, W.: Existence of bound states in quantum waveguides under weak conditions. Lett. Math. Phys. 35, 1–12 (1995)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Alessandra A. Verri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

Stability of the essential spectrum

This appendix is dedicated to the proof of Proposition 2. We use the arguments of [4]. In that work, the authors employed a different characterization of the essential spectrum which can be adapted to our problem. In fact,

Lemma 1

A real number \(\lambda \) belongs to the essential spectrum of \(H_{f', g'}\) if, and only if, there exists a sequence \(\{\psi _n\}_{n=1}^\infty \subset {\mathrm {dom}~}b_{f',g'}\) such that the following conditions hold:

  1. (i)

    \(\Vert \psi _n\Vert =1\), for all \( n \ge 1\);

  2. (ii)

    \((H_{f', g'}-\lambda {\mathbf {1}})\psi _n \rightarrow 0\), as \(n \rightarrow \infty \), in the norm of the dual space \(({\mathrm {dom}~}b_{f', g'})^*\);

  3. (iii)

    \(\mathrm{supp}\,\psi _n \subset Q \backslash (-n,n) \times S\), for all \(n \ge 1\).

The proof of Lemma 1 is very similar to the proof of Lemma 4.1 of [4], and it will be omitted in this text.

Proof of Proposition 2

Let \(\lambda \in \sigma _{ess}(H_{\beta _1, \beta _2})\). By Lemma 1, there exists a sequence \(\{\psi _n\}_{n=1}^\infty \subset {\mathrm {dom}~}b_{\beta _1, \beta _2}\) such that the conditions \((i)-(iii)\) are satisfied. Denote the norm in \(({\mathrm {dom}~}b_{\beta _1, \beta _2})^*\) by \(\Vert \cdot \Vert _-\); one has \(\Vert \cdot \Vert _- = \Vert (H_{\beta _1, \beta _2}+{\mathbf {1}})^{-1/2} \cdot \Vert \). For each \(n \in {\mathbb {N}}\), write

$$\begin{aligned} \psi _n = (H_{\beta _1, \beta _2}+{\mathbf {1}})^{-1} (H_{\beta _1, \beta _2}-\lambda {\mathbf {1}}) \psi _n +(1+\lambda ) (H_{\beta _1, \beta _2}+ {\mathbf {1}})^{-1} \psi _n. \end{aligned}$$

By (ii), we can see that the sequence \(\{\psi _n\}_{n=1}^\infty \) is bounded in \({\mathrm {dom}~}b_{\beta _1, \beta _2}\).

Now, for simplicity, write

$$\begin{aligned} \tau _1(x):= f'(x) - \beta _1, \quad \tau _2(x):= g'(x) - \beta _2. \end{aligned}$$

Some calculations show that

$$\begin{aligned} b_{f',g'}(\varphi , \psi _n) - \lambda \langle \varphi , \psi _n \rangle&= b_{\beta _1, \beta _2} (\varphi , \psi _n) - \lambda \langle \varphi , \psi _n \rangle \\&\quad + \int \limits _\Lambda \left( -\tau _1 \frac{\partial \varphi }{\partial y_1} -\tau _2 \frac{\partial \varphi }{\partial y_2}\right) \left( \psi _n' - \beta _1 \frac{\partial \psi _n}{\partial y_1} - \beta _2 \frac{\partial \psi _n}{\partial y_2}\right) {\mathrm {d}}x{\mathrm {d}}y\\&\quad + \int \limits _\Lambda \left( \varphi ' - (\beta _1 + \tau _1) \frac{\partial \varphi }{\partial y_1} - (\beta _2+\tau _2) \frac{\partial \varphi }{\partial y_2}\right) \left( -\tau _1 \frac{\partial \psi _n}{\partial y_1} -\tau _2 \frac{\partial \psi _n}{\partial y_2}\right) {\mathrm {d}}x{\mathrm {d}}y. \end{aligned}$$

Since \(\{\psi _n\}_{n=1}^\infty \) is bounded in \(H_0^1(\Lambda )\), and \(\Vert \partial \varphi / \partial y_1\Vert ^2, \Vert \partial \varphi / \partial y_2\Vert ^2 \le b_{f',g'}(\varphi ) = \Vert \varphi \Vert _+^2\), one has

$$\begin{aligned}&\sup _{0 \ne \varphi \in H_0^1(\Lambda )} \left\{ \int \limits _\Lambda \left( -\tau _1 \frac{\partial \varphi }{\partial y_1} -\tau _2 \frac{\partial \varphi }{\partial y_2}\right) \left( \psi _n' - \beta _1 \frac{\partial \psi _n}{\partial y_1} - \beta _2 \frac{\partial \psi _n}{\partial y_2}\right) {\mathrm {d}}x{\mathrm {d}}y/ \Vert \varphi \Vert _+ \right\} \\&\qquad \le \left( \Vert \tau _1\Vert _{L^\infty ({\mathbb {R}} \backslash (-n,n))} + \Vert \tau _2\Vert _{L^\infty ({\mathbb {R}} \backslash (-n,n))} \right) \left( \Vert \psi _n'\Vert + \beta _1 \left\| \frac{\partial \psi _n}{\partial y_1} \right\| + \beta _2 \left\| \frac{\partial \psi _n}{\partial y_2} \right\| \right) \rightarrow 0, \end{aligned}$$


$$\begin{aligned}&\sup _{0 \ne \varphi \in H_0^1(\Lambda )} \left\{ \int \limits _\Lambda \left( \varphi ' - (\beta _1 + \tau _1) \frac{\partial \varphi }{\partial y_1} - (\beta _2+\tau _2) \frac{\partial \varphi }{\partial y_2}\right) \left( -\tau _1 \frac{\partial \psi _n}{\partial y_1} -\tau _2 \frac{\partial \psi _n}{\partial y_2}\right) {\mathrm {d}}x{\mathrm {d}}y/ \Vert \varphi \Vert _+ \right\} \\&\qquad \le \Vert \tau _1\Vert _{L^\infty ({\mathbb {R}} \backslash (-n,n))} \left\| \frac{\partial \psi _n}{\partial y_1} \right\| + \Vert \tau _2\Vert _{L^\infty ({\mathbb {R}} \backslash (-n,n))} \left\| \frac{\partial \psi _n}{\partial y_2} \right\| \rightarrow 0, \end{aligned}$$

as \(n \rightarrow \infty \). Then, \(\lambda \in \sigma _{ess}(H_{f',g'})\). The inclusion \(\sigma _{ess}(H_{f',g'}) \subset \sigma _{ess}(H_{\beta _1, \beta _2})\) can be obtained in a similar way.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verri, A.A. Spectrum of the Dirichlet Laplacian in sheared waveguides. Z. Angew. Math. Phys. 72, 23 (2021). https://doi.org/10.1007/s00033-020-01444-z

Download citation


  • Sheared waveguides
  • Dirichlet Laplacian
  • Essential spectrum
  • Discrete spectrum

Mathematics Subject Classification

  • Primary: 35R45
  • 81Q10
  • Secondary: 35P20
  • 47F05
  • 58J50