On the conditions for the breaking of oscillations in a cold plasma

Abstract

The Cauchy problem for a quasilinear system of hyperbolic equations describing plane one-dimensional relativistic oscillations of electrons in a cold plasma is considered. For some simplified formulation of the problem, a criterion for the existence of a global in time solutions is obtained. For the original problem, a sufficient condition for blow-up is found, as well as a sufficient condition for the solution to remain smooth at least for time \( 2 \pi \). In addition, it is shown that in the general case, arbitrarily small perturbations of the trivial state lead to the formation of singularities in a finite time. It is further proved that there are special initial data such that the respective solution remains smooth for all time, even in the relativistic case. Periodic in space traveling wave gives an example of such a solution. In order for such a wave to be smooth, the velocity of the wave must be greater than a certain constant that depends on the initial data. Nevertheless, arbitrary small perturbation of general form destroys these global in time smooth solutions. The nature of the singularities of the solutions is illustrated by numerical examples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Akhiezer, A.I., Lyubarski, G.V.: Toward a nonlinear theory of plasma oscillations. Dokl. Akad. Nauk. SSSR 80, 193–195 (1951)

    Google Scholar 

  2. 2.

    Akhiezer, A.I., Polovin, R.V.: Theory of wave motion of an electron plasma. Sov. Phys. JETP 3(5), 696–705 (1956)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Albritton, J., Koch, P.: Cold plasma wavebreaking: production of energetic electrons. Phys. Fluids 18(9), 1136–1139 (1975)

    Article  Google Scholar 

  4. 4.

    Alexandrov, A.F., Bogdankevich, L.S., Rukhadze, A.A.: Principles of Plasma Electrodynamics. Springer Series in Electronics and Photonics. Springer, Berlin (1984)

    Book  Google Scholar 

  5. 5.

    Alinhac, S.: Blowup for Nonlinear Hyperbolic Equations. Series: Progress in Nonlinear Differential Equations and Their Applications, vol. 17. Birkhäuser, Basel (1995)

    Book  Google Scholar 

  6. 6.

    Bellan, P.M.: Fundamentals of Plasma Physics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  7. 7.

    Bernstein, I.B., Greene, J.M., Kruskal, M.D.: Exact nonlinear plasma oscillations. Phys. Rev. 108(3), 546–550 (1957)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. McGraw-Hill, New York (1985)

    Google Scholar 

  9. 9.

    Booker, H.G.: Cold Plasma Waves. Springer, Berlin (2004)

    Google Scholar 

  10. 10.

    Bulanov, S.V., Esirkepov, T.Z., Hayashi, Y., et al.: On some theoretical problems of laser wake-field accelerators. J. Plasma Phys. 82(3), 905820308 (2016)

    Article  Google Scholar 

  11. 11.

    Chizhonkov, E.V.: Mathematical Aspects of Modelling Oscillations and Wake Waves in Plasma. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  12. 12.

    Davidson, R.C.: Methods in Nonlinear Plasma Theory. Academic Press, New York (1972)

    Google Scholar 

  13. 13.

    Dawson, J.M.: Nonlinear electron oscillations in a cold plasma. Phys. Rev. 113(2), 383–387 (1959)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Diver, D.A., Laing, E.W.: Modelling nonlinear electrostatic oscillations in plasmas. Phys. Plasmas 23, 122103 (2016)

    Article  Google Scholar 

  15. 15.

    Dnestrovskii, Y.N., Kostomarov, D.P.: Numerical Simulation of Plasmas. Springer Series in Computational Physics. Springer, Berlin (1986)

    Book  Google Scholar 

  16. 16.

    Erdélyi, A.: Higher transcendental functions. Vol. III. Based on notes left by Harry Bateman. Reprint of the 1955 original. Robert E. Krieger Publishing Co., Melbourne (1981)

  17. 17.

    Esarey, E., Schroeder, C.B., Leemans, W.P.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009)

    Article  Google Scholar 

  18. 18.

    Ginzburg, V.L.: Propagation of Electromagnetic Waves in Plasma. Pergamon, New York (1970)

    Google Scholar 

  19. 19.

    Kulikovskii, A.G., Pogorelov, N.V., Semenov, A.Y.: Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Chapman and Hall/CRC, Boca Raton (2019)

    MATH  Google Scholar 

  20. 20.

    Rendall, A.D.: Theorems on existence and global dynamics for the Einstein equations. Living Rev. Relativ. (2005). https://doi.org/10.12942/lrr-2005-6

    Article  MATH  Google Scholar 

  21. 21.

    Skubachevskii, A.L.: Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic field. Russ. Math. Surv. 69(2), 291–330 (2014)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Sheppard, C.J.R.: Cylindrical lenses—focusing and imaging: a review. Appl. Opt. 52(4), 538–545 (2013)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Trines, R.: Wave breaking of electrostatic waves in warm plasma. ICTP report, pp. 2052–2053 (2009). http://indico.ictp.it/event/a08175/session/113/contribution/80

  24. 24.

    Wang, J., Payne, G.L., Nicholson, D.R.: Wave breaking in cold plasma. Phys. Fluids B Plasma Phys. 4(6), 1432–1440 (1992)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olga S. Rozanova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the Moscow Center for Fundamental and Applied Mathematics.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rozanova, O.S., Chizhonkov, E.V. On the conditions for the breaking of oscillations in a cold plasma. Z. Angew. Math. Phys. 72, 13 (2021). https://doi.org/10.1007/s00033-020-01440-3

Download citation

Keywords

  • Quasilinear hyperbolic system
  • The Cauchy problem
  • Blow-up
  • Plasma oscillations
  • Breaking effect

Mathematics Subject Classification

  • Primary 35Q60
  • Secondary 35L60
  • 35L67
  • 34M10