Deformation of a fluid drop subjected to a uniform electric field


We theoretically investigate the deformation of a perfect dielectric drop suspended in a second dielectric liquid subject to a uniform electric field. Axisymmetric equilibrium shapes are found by solving simultaneously the Young–Laplace equation at the interface and Laplace equation for the electric field. Analytical solutions are constructed for the governing nonlinear boundary-value problem using domain perturbation method together with a special type of Hermite–Padé approximation. The results show the existence of a critical electric capillary number beyond which no axisymmetric figure is possible.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Yangsoo, S., Kim, C.: Spreading of inkjet droplet of non-Newtonian fluid on solid surface with controlled contact angle at low Weber and Reynolds numbers. J. Non-Newtonian Fluid Mech. 162(1–3), 78–87 (2009)

    Google Scholar 

  2. 2.

    Bailey, G.: Electrostatic Spraying of Liquids. Wiley, New York (1988)

    Google Scholar 

  3. 3.

    Bienia, M., Quilliet, C., Vallade, M.: Modification of drop shape controlled by electrowetting. Langmuir 19(22), 9328–9333 (2003)

    Article  Google Scholar 

  4. 4.

    Kebarle, P.: A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J. Mass Spectrom. 35, 804–817 (2000)

    Article  Google Scholar 

  5. 5.

    Brandenbourger, M., Caps, H., Vitry, Y., Dorbolo, S.: Electrically charged droplets in microgravity. Microgravity Sci. Technol. 29(3), 229–239 (2017)

    Article  Google Scholar 

  6. 6.

    Song, H., Chen, D.L., Ismagilov, R.F.: Reactions in droplets in microfluidic channels. Angewandte Chemie Iinternational Edition 45, 7336–7356 (2006)

    Article  Google Scholar 

  7. 7.

    Zaghdoudi, M.C., Lallemand, M.: Electric field effects on pool boiling. J. Enhanced Heat Transf. 9(5–6), 187–208 (2002)

    Article  Google Scholar 

  8. 8.

    McDonald, J.E.: The shape and aerodynamics of large raindrops. J. Meteorol. 11(6), 478–494 (1954)

    Article  Google Scholar 

  9. 9.

    Beard, K.V., Feng, J., Chuang, C.C.: A Simple perturbation model for the electrostatic shape of falling drops. J. Atmos. Sci. 46(15), 2404–2418 (1989)

    Article  Google Scholar 

  10. 10.

    Thiam, A.R., Bremond, N., Bibette, J.: Breaking of an emulsion under an ac electric field. Phys. Rev. Lett. 102, 188304 (2009)

    Article  Google Scholar 

  11. 11.

    Drelich, J., Bryll, G., Kapczynski, J., Hupka, J., Miller, J.D., Hanson, F.V.: The effect of electric field pulsation frequency on breaking water-in-oil emulsions. Fuel Process. Technol. 31(2), 105–113 (1992)

    Article  Google Scholar 

  12. 12.

    Bernard Cohen, I.: Benjamin Franklin’s Experiments: A New Edition of Franklin’s Experiments and observations on electricity. Harvard University Press, Cambridge (1941)

    Google Scholar 

  13. 13.

    Rayleigh, Lord: On the equilibrium of liquid conducting masses charged with electricity. Philos. Mag. 14, 184–186 (1882)

    Article  Google Scholar 

  14. 14.

    O’Konski, C.T., Thacher, H.C.: The distortion of aerosol droplets by an electric field. J. Phys. Chem. 57, 955–958 (1953)

    Article  Google Scholar 

  15. 15.

    Allan, R.S., Mason, S.G.: Particle behaviour in shear and electric fields I. Deformation and burst of fluid drops. Proc. R. Soc. Lond. A 267, 45–61 (1962)

    Article  Google Scholar 

  16. 16.

    Garton, C.G., Krasucki, Z.: Bubbles in insulating liquids: stability in an electric field. Proc. R. Soc. Lond. A 280, 211–226 (1964)

    Article  Google Scholar 

  17. 17.

    Taylor, G.I.: Studies in electrohydrodynamics: I. The circulation produced in a drop by an electric field. Proc. R. Soc. Lond. A 280, 383–397 (1966)

    Google Scholar 

  18. 18.

    Taylor, G.I.: Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 291, 159–166 (1964)

    MATH  Google Scholar 

  19. 19.

    Saville, D.A.: Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 27–64 (1997)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Rosenkilde, C.E.: A dielectric fluid drop in an electric field. Proc. R. Soc. Lond. A 312, 473–494 (1969)

    Article  Google Scholar 

  21. 21.

    Ajayi, O.O.: A note on Taylor’s electrohydrodynamic theory. Proc. Roy. Soc. Lond. A 364, 499–507 (1978)

    Article  Google Scholar 

  22. 22.

    Miksis, M.J.: Shape of a drop in an electric field. Phys. Fluids 24, 1967–1972 (1981)

    Article  Google Scholar 

  23. 23.

    Dodgson, V., Sozou, C.: The deformation of a liquid drop by an electric field. ZAMP 38, 424–432 (1987)

    MATH  Google Scholar 

  24. 24.

    Sherwood, J.D.: Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech. 188, 133–146 (1988)

    Article  Google Scholar 

  25. 25.

    Basaran, O.A., Scriven, L.E.: Axisymmetric shapes and stability of charged drops in an external electric field. Phys. Fluids A 1, 799–809 (1989)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Li, H., Halsey, T.C., Lobkovsky, A.: Singular shape of a fluid drop in an electric or magnetic field. Europhys. Lett. 27, 575–580 (1994)

    Article  Google Scholar 

  27. 27.

    Feng, J.Q., Scott, T.C.: A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J. Fluid Mech. 311, 289–326 (1996)

    Article  Google Scholar 

  28. 28.

    Stone, H.A., Lister, J.R., Brenner, M.P.: Drops with conical ends in electric and magnetic fields. Proc. Roy. Soc. Lond. A 455, 329–347 (1999)

    Article  Google Scholar 

  29. 29.

    Shaw, S.J., Shaw, S.P.D.M.: Critical strength of an electric field whereby a bubble can adopt a steady shape. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2110), 3127–3143 (2009)

  30. 30.

    Bjorklund, E.: The level-set method applied to droplet dynamics in the presence of an electric field. Comput. Fluids 38(2), 358–369 (2009)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Paknemat, H., Pishevar, A.R., Pournaderi, P.: Numerical simulation of drop deformations and breakup modes caused by direct current electric fields. Phys. Fluids 24, 102101 (2012)

    Article  Google Scholar 

  32. 32.

    Melcher, J.R., Taylor, G.I.: Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111–146 (1969)

    Article  Google Scholar 

  33. 33.

    Joseph, D.D.: Domain perturbations: the higher order theory of infinitesimal water waves. Arch. Ration. Mech. Anal. 51, 295–303 (1973)

    MathSciNet  Article  Google Scholar 

  34. 34.

    Sattinger D.H.: Topics in stability and bifurcation theory. Springer, Lecture Notes in Mathematics, 309 (1973)

  35. 35.

    Guttmann, A.J.: Asymptotic analysis of power-series expansions. in Phase Transitions and Critical Phenomena Vol. 13, 1-234, eds C. Domb and J.L Lebowitz (Academic Press, New York) (1989)

  36. 36.

    Common, A.K.: Applications of Hermite–Padé approximants to water waves and the harmonic oscillator on a lattice. J. Phys. A 15, 3665–3677 (1982)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Makinde, O.: On thermal stability of a reactive third-grade fluid in a channel with convective cooling the walls. Appl. Math. Comput. 213(1), 170–176 (2009)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Er-Riani, M., El Jarroudi, M., Sero-Guillaume, O.: Hermite–Padé approximation approach to shapes of rotating drops. Appl. Math. Mod. 38, 212–220 (2014)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Youness Filali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Filali, Y., Er-Riani, M. & El Jarroudi, M. Deformation of a fluid drop subjected to a uniform electric field. Z. Angew. Math. Phys. 72, 12 (2021).

Download citation


  • Drop deformation
  • Drop breakup
  • Electrohydrodynamic effect
  • Electric capillary number

Mathematics Subject Classification

  • 41A21
  • 76E25
  • 35J05