Skip to main content
Log in

Non-linear anti-symmetric shear motion: a comparative study of non-homogeneous and homogeneous plates

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this article, the non-linear anti-symmetric shear motion for some comparative studies between the non-homogeneous and homogeneous plates, having two free surfaces with stress-free, is considered. Assuming that one plate contains hyper-elastic, non-homogeneous, isotropic, and generalized neo-Hookean materials and the other one consists of hyper-elastic, homogeneous, isotropic, and generalized neo-Hookean materials. Using the method of multiple scales, the self-modulation of the non-linear anti-symmetric shear motion in these plates, as the non-linear Schrödinger (NLS) equations, can be given. Using the known solitary wave solutions, called bright and dark solitary wave solutions, to NLS equations, these comparative studies in terms of the non-homogeneous and non-linear effects are made. All numerical results, based on the asymptotic analyses, are graphically presented for the lowest anti-symmetric branches of both dispersion relations, including the deformation fields of plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland Publishing Co., Amsterdam (1973)

    MATH  Google Scholar 

  2. Graff, K.F.: Wave Motion in Elastic Solids. Dover Publ. Inc., New York (1975)

    MATH  Google Scholar 

  3. Ewing, W.M., Jardetsky, W.S., Press, F.: Elastic Waves in Layered Media. McGraw-Hill, New York (1957)

    Google Scholar 

  4. Erofeev, V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2002)

    Google Scholar 

  5. Eringen, A.C., Şuhubi, E.S.: Elastodynamics, vol. 2. Academic Press, New York (1975)

    MATH  Google Scholar 

  6. Jeffrey, A., Engelbrecht, J. (eds.): Nonlinear Waves in Solids. International Centre for Mechanical Sciences. Course and Lectures-No. 341. Springer-Verlag, New York (1994)

    Google Scholar 

  7. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, London (1982)

    MATH  Google Scholar 

  8. Ablowitz, M.J., Clarkson, P.A.: Solitons. Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  9. Jeffrey, A., Kawahara, T.: Asymptotic Methods in Nonlinear Wave Theory. Pitman, Boston (1981)

    MATH  Google Scholar 

  10. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, Hoboken (1974)

    MATH  Google Scholar 

  11. Porubov, A.V.: Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  12. Bataille, K., Lund, F.: Nonlinear waves in elastic media. Phys. D 6, 95–104 (1982)

    MathSciNet  Google Scholar 

  13. Porubov, A.V., Samsonov, A.M.: Long nonlinear strain waves in layered elastic half-space. Int. J. Nonlinear Mech. 30(6), 861–877 (1995)

    MATH  Google Scholar 

  14. Pucci, E., Saccomandi, G.: Secondary motions associated with anti-plane shear in nonlinear isotropic elasticity. Q. J. Mech. Appl. Math. 66, 221–239 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Fu, Y.: On the propagation of nonlinear traveling waves in an incompressible elastic plate. Wave Motion 19, 271–292 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Destrade, M., Goriely, M.A., Saccomandi, G.: Scalar evolution equations for shear waves in incompressible solids: a simple derivation of the Z, ZK, KZK and KP equations. Proc. R. Soc. A 467, 1823–1834 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Maugin, G.A., Hadouaj, H.: Solitary surface transverse waves on an elastic substrate coated with a thin film. Phy. Rev. B 44(3), 1266–1280 (1991)

    Google Scholar 

  18. Teymur, M.: Nonlinear modulation of Love waves in a compressible hyperelastic layered half space. Int. J. Eng. Sci. 26, 907–927 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Ahmetolan, S., Teymur, M.: Nonlinear modulation of SH waves in an incompressible hyperelastic plate. Z. Angew. Math. Phys. 58, 457–474 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Teymur, M., Demirci, A., Ahmetolan, S.: Propagation of surface SH waves on a half space covered by a nonlinear thin layer. Int. J. Eng. Sci. 85, 150–162 (2014)

    Google Scholar 

  21. Ahmetolan, S., Teymur, M.: Nonlinear modulation of SH waves in a two-layered plate and formation of surface SH waves. Int. J. Nonlinear Mech. 38, 1237–1250 (2003)

    MATH  Google Scholar 

  22. Mayer, A.P.: Surface acoustic waves in nonlinear elastic media. Phys. Rep. 256, 4–5 (1995)

    MathSciNet  Google Scholar 

  23. Norris, A.: Non-linear acoustics. In: Hamilton, M.F., Blackstock, D.T. (eds.) Finite Amplitude Waves in Solids, vol. 9, pp. 263–277. Academic Press, San Diego (1998)

    Google Scholar 

  24. Demirkuş, D., Teymur, M.: Shear horizontal waves in a nonlinear elastic layer overlying a rigid substratum. Hacet. J. Math. Stat. 46(5), 801–815 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Demirkuş, D.: Nonlinear bright solitary SH waves in a hyperbolically heterogeneous layer. Int. J. Nonlinear Mech. 102, 53–61 (2018)

    MATH  Google Scholar 

  26. Demirkuş, D.: Nonlinear dark solitary SH waves in a heterogeneous layer. TWMS J. Appl. Eng. Math. (2019). https://doi.org/10.26837/jaem.627563

    Article  MATH  Google Scholar 

  27. Demirkuş, D.: Symmetric bright solitary SH waves in a nonlinear heterogeneous plate. Z. Angew. Math. Phys. 70(2), 63 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Demirkuş, D.: Symmetric dark solitary SH waves in a nonlinear heterogeneous plate. Z. Angew. Math. Phys. 70(4), 108 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Demirkuş, D.: Antisymmetric bright solitary SH waves in a nonlinear heterogeneous plate. Z. Angew. Math. Phys. 69(5), 128 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Demirkuş, D.: Antisymmetric dark solitary SH waves in a nonlinear heterogeneous plate. Z. Angew. Math. Phys. 70(6), 173 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Hudson, J.A.: Love waves in a heterogeneous medium. R. Astron. Soc. Geophys. J. 6, 131–147 (1962)

    MathSciNet  Google Scholar 

  32. Vardoulakis, I., Georgiadis, H.G.: SH surface waves in a homogeneous gradient-elastic half-space with surface energy. J. Elast. 47, 147–165 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Sahu, S.A., Saroj, P.K., Dewangan, N.: SH-waves in viscoelastic heterogeneous layer over half-space with self-weight. Arch. Appl. Mech. 84, 235–245 (2014)

    MATH  Google Scholar 

  34. Avtar, P.: Love waves in a two-layered crust overlying a vertically inhomogeneous halfspace. Pure Appl. Geophys. 66, 48–68 (1967)

    Google Scholar 

  35. Bhattacharya, S.N.: Exact solutions of SH wave equation for inhomogeneous media. Bull. Seism. Soc. Am. 60, 1847–1859 (1970)

    Google Scholar 

  36. Danishevs’kyy, W., Kaplunov, J.D., Rogerson, G.A.: Anti-plane shear waves in a fibre-reinforced composite with a non-linear imperfect interface. Int. J. Nonlinear Mech. 76, 223–232 (2015)

    Google Scholar 

  37. Peregrine, D.H.: Water waves, non-linear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16–43 (1983)

    MATH  Google Scholar 

  38. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimesional self-focussing and one-dimesional self-modulation of waves in non-linear media. Soviet Phys. JETP 34, 62–69 (1972)

    Google Scholar 

  39. Zakharov, V.E., Shabat, A.B.: Interaction between solitons in a stable medium. Soviet Phys. JETP 37, 823–828 (1973)

    Google Scholar 

  40. Pence, T.J., Gou, K.: On compressible versions of the incompresible neo-Hookean material. Math. Mech. Solids 20(2), 157–182 (2015)

    MATH  Google Scholar 

  41. Prikazchiova, L., Aydın, Y.E., Erbas, B., Kaplunov, J.: Asymptotic analysis of an anti-plane dynamic problem for a three-layered strongly inhomogeneous laminate. Math. Mech. Solids 25(1), 3–16 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Demirkuş, D.: A comparison between homogeneous and heterogeneous layers for nonlinear bright solitary shear horizontal waves in terms of heterogeneous effect. In: Altenbach, H., Eremeyev, V.A., Pavlov, I., Porubov, A.V. (eds.) Nonlinear Wave Dynamics of Materials and Structures, vol. 122. Springer Int. Pub., Berlin (2020)

    Google Scholar 

  43. Demirkuş, D.: Some comparisons between heterogeneous and homogeneous layers for nonlinear SH waves in terms of heterogeneous and nonlinear effect. Math. Mech. Solids (2020). https://doi.org/10.1177/1081286520946357

    Article  Google Scholar 

  44. Bhattacharya, S.N.: Love wave dispersion: a comparison of results for a semi-infinite medium with inhomogeneous layers and for its approximation by homogeneous layers. Pure Appl. Geophys. 114, 1021–1029 (1976)

    Google Scholar 

  45. Craster, R., Joseph, L., Kaplunov, J.: Long-wave asymptotic theories: the connection between functionally graded waveguides and periodic media. Wave Motion 51(4), 581–588 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Dear Distinguished Editor Prof. David J. Steigmann as a good advisor for good handling the paper and the respected referee as a good mentor for improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilek Demirkuş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirkuş, D. Non-linear anti-symmetric shear motion: a comparative study of non-homogeneous and homogeneous plates. Z. Angew. Math. Phys. 71, 193 (2020). https://doi.org/10.1007/s00033-020-01417-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01417-2

Keywords

Mathematics Subject Classification

Navigation