Skip to main content

A thermodynamically consistent stress-rate type model of one-dimensional strain-limiting viscoelasticity


We introduce a one-dimensional stress-rate type nonlinear viscoelastic model for solids that obey the assumptions of the strain-limiting theory. Unlike the classical viscoelasticity theory, the critical hypothesis in the present strain-limiting theory is that the linearized strain depends nonlinearly on the stress and the stress rate. We show the thermodynamic consistency of the model using the complementary free energy and then using the Gibbs free energy. This allows us to take the stress and the stress rate as primitive variables instead of kinematical quantities such as deformation or strain. We also show that the non-dissipative part of the materials in consideration has a stored energy. We compare the new stress-rate type model with the strain-rate type viscoelastic model due to Rajagopal from the points of view of energy decay, the nonlinear differential equations of motion and Fourier analysis of the corresponding linear models.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bustamante, R., Rajagopal, K.R.: Solutions of some simple boundary value problems within the context of a new class of elastic materials. Int. J. Non-Linear Mech. 46, 376–386 (2011)

    Article  Google Scholar 

  2. 2.

    Bulicek, M., Malek, J., Rajagopal, K.R.: On Kelvin–Voigt model and its generalizations. AIMS Evol. Eq. Control Theory 1, 17–42 (2012)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167–178 (1963)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Erbay, H.A., Şengül, Y.: Traveling waves in one-dimensional nonlinear models of strain-limiting viscoelasticity. Int. J. Non-Linear Mech. 77, 61–68 (2015)

    Article  Google Scholar 

  5. 5.

    Freed, A.D., Rajagopal, K.R.: A promising approach for modeling biological fibers. Acta Mech. 227, 1609–1619 (2016)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Fu, S., Chung, E., Mai, T.: Generalized multiscale finite element method for a strain-limiting nonlinear elasticity model. J. Comput. Appl. Math. 359, 153–165 (2019)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Huang, S.-J., Rajagopal, K.R., Dai, H.-H.: Wave patterns in a nonclassic nonlinearly-elastic bar under Riemann data. Int. J. Non-Linear Mech. 91, 76–85 (2017)

    Article  Google Scholar 

  8. 8.

    Itou, H., Kovtunenko, V.A., Rajagopal, K.R.: Crack problem within the context of implicitly constituted quasi-linear viscoelasticity. Math. Models Methods Appl. Sci. 29, 355–372 (2019)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Muliana, A., Rajagopal, K.R., Wineman, A.S.: A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials. Acta Mech. 224, 2169–2183 (2013)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Rajagopal, K.R.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Rajagopal, K.R.: The elasticity of elasticity. Z. Angew. Math. Phys. 58, 309–317 (2007)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Rajagopal, K.R.: On a new class of models in elasticity. Math. Comput. Appl. 15, 506–528 (2010)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Rajagopal, K.R.: Non-linear elastic bodies exhibiting limiting small strain. Math. Mech. Solids 16, 122–139 (2011)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Rajagopal, K.R.: Conspectus of concepts of elasticity. Math. Mech. Solids 16, 536–562 (2011)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Rajagopal, K.R.: On the nonlinear elastic response of bodies in the small strain range. Acta Mech. 225, 1545–1553 (2014)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Rajagopal, K.R.: A note on the linearization of the constitutive relations of non-linear elastic bodies. Mech. Res. Commun. 93, 132–137 (2018)

    Article  Google Scholar 

  17. 17.

    Rajagopal, K.R., Saccomandi, G.: Circularly polarized wave propagation in a class of bodies defined by a new class of implicit constitutive relations. Z. Angew. Math. Phys. 65, 1003–1010 (2014)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Rajagopal, K.R., Srinivasa, A.R.: On the response of non-dissipative solids. Proc. R. Soc. Lond. A 463, 357–367 (2007)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Rajagopal, K.R., Srinivasa, A.R.: On a class of non-dissipative materials that are not hyperelastic. Proc. R. Soc. Lond. A 465, 493–500 (2009)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Rajagopal, K.R., Srinivasa, A.R.: A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials. Proc. R. Soc. Lond. A 467, 39–58 (2011)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Rajagopal, K.R., Srinivasa, A.R.: An implicit thermomechanical theory based on a Gibbs potential formulation for describing the response of thermoviscoelastic solids. Int. J. Eng. Sci. 70, 15–28 (2013)

    Article  Google Scholar 

  22. 22.

    Spencer, A.J.M.: Theory of Invariants. In: Eringen, A.C. (ed.) Continuum physics, vol. 1. Academic Press, New York (1971)

    Google Scholar 

  23. 23.

    Şengül, Y.: Viscoelasticity with limiting strain. Discrete Contin. Dyn. Syst. -S (2018).

    Article  Google Scholar 

  24. 24.

    Truesdell, C.: Rational Thermodynamics. Springer, New York (1984)

    Book  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Y. Şengül.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erbay, H.A., Şengül, Y. A thermodynamically consistent stress-rate type model of one-dimensional strain-limiting viscoelasticity. Z. Angew. Math. Phys. 71, 94 (2020).

Download citation

Mathematics Subject Classification

  • Primary 74A15
  • 74D05
  • 74D10
  • Secondary 74A05
  • 74A10
  • 74A20
  • 74B05


  • Viscoelasticity
  • Strain-limiting model
  • Stress rate
  • Thermodynamics
  • Implicit constitutive theory