Skip to main content
Log in

Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A novel multi-term time-fractional mixed diffusion and diffusion-wave equation will be considered in this work. Different from the general multi-term time-fractional mixed diffusion and diffusion-wave equations, this new multi-term equation possesses a special time-fractional operator on the spatial derivative. We use a new discrete scheme to approximate the time-fractional derivative, which can improve the temporal accuracy. Then, a fully discrete spectral scheme is developed based on finite difference discretization in time and Legendre spectral approximation in space. Meanwhile, a very important lemma is proposed and proved, to obtain the unconditional stability and convergence of the fully discrete spectral scheme. Finally, four numerical experiments are presented to confirm our theoretical analysis. Both of our analysis and numerical test indicate that the fully discrete scheme is accurate and efficient in solving the generalized multi-term time-fractional mixed diffusion and diffusion-wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 39, 1–77 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    Google Scholar 

  4. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    MATH  Google Scholar 

  5. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constrains. SIAM Rev. 54, 667–696 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Baleanu, D., Jajarmi, A., Bonyah, E., Hajipour, M.: New aspects of the poor nutrition in the life cycle within the fractional calculus. Adv. Differ. Equ. 2018, 230 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Arafa, A.A.M., Rida, S.Z., Mohammadein, A.A., Ali, H.M.: Solving nonlinear fractional differential equation by generalized Mittag-Leffler function method. Commun. Theor. Phys. 59, 661–663 (2013)

    MathSciNet  Google Scholar 

  8. Abbaszadeh, M.: Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl. Math. Lett. 88, 179–185 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Arshad, S., Bu, W.P., Huang, J.F., Tang, Y.F., Zhao, Y.: Finite difference method for time space linear and nonlinear fractional diffusion equations. Int. J. Comput. Math. 95, 202–217 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Zeng, F., Turner, I., Burrage, K.: A stable fast time-stepping method for fractional integral and derivative operator. J. Sci. Comput. 77, 283–307 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Celik, C., Duman, M.: Finite element method for a symmetric tempered fractional diffusion equation. Appl. Numer. Math. 120, 270–286 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Dehghan, M., Abbaszadeh, M.: Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition. Comput. Math. Appl. 73, 1270–1285 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Fan, W., Liu, F., Jiang, X., Turner, I.: A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain. Fract. Calc. Appl. Anal. 20, 352–383 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Chakraborty, A., Rathish Kumar, B.V.: Finite element method for drifted space fractional tempered diffusion equation. J. Appl. Math. Comput. 61, 117–135 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Simmons, A., Yang, Q.Q., Moroney, T.: A finite volume method for two-sided fractional diffusion equations on non-uniform meshes. J. Comput. Phys. 335, 747–759 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Li, J., Liu, F., Feng, L.B., Turner, I.: A novel finite volume method for the Riesz space distributed-order advection–diffusion equation. Appl. Math. Model. 46, 536–553 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high order space-time spectral method for the time frctional Fokker–Planck equation. SIAM J. Sci. Comput. 37, A701–A724 (2015)

    MATH  Google Scholar 

  18. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Aayernouri, M., Karniadakis, G.E.: Discontinuous spectral element methods for time- and space-fractional advection equations. SIAM J. Sci. 36, B684–B707 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Bhrawy, A.H., Baleanu, D.: A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients. Rep. Math. Phys. 72, 219–233 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Dehghan, M., Abbaszadeh, M.: A legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. Math. Methods Appl. Sci. 41, 3476–3494 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Abbaszadeh, M., Dehghan, M.: An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algorithms 75, 172–211 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Agheli, B.: Solving fractional partial differential equation by using wavelet operational method. J. Math. Comput. Sci. 7, 234–240 (2013)

    Google Scholar 

  24. Hyder Ali, S., Shah, Muttaqi: Some accelerated flows of a generalized Oldroyd-B fluid between two side walls perpendicular to the plate. Nonlinear Anal. Real World Appl. 10, 2146–2150 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Qi, H.T., Xu, M.Y.: Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative. Appl. Math. Model. 33, 4184–4191 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Liu, Y.Q., Zheng, L.C., Zhang, X.X.: Unsteady MHD Couette flow of a generalized Oldroyd-B fluid with fractional derivative. Comput. Math. Appl. 61, 443–450 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Zheng, L.C., Liu, Y.Q., Zhang, X.X.: Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear Anal. Real World Appl. 13, 513–523 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Zhao, J., Zheng, L., Zhang, X.X., Liu, F., Chen, X.: Unsteady natural convection heat transfer past a vertical flat plate embedded in a porous medium saturated with fractional Oldroyd-B fluid. J. Heat Transf. 139, 012501 (2017)

    Google Scholar 

  29. Jiang, Y., Qi, H., Xu, H., Jiang, X.: Transient electroosmotic slip flow of fractional Oldroyd-B fluids. Microfluid Nanofluid 21, 1–10 (2017)

    Google Scholar 

  30. Hayat, T., Zaid, S., Asghar, S., Hendi, A.A.: Exact solutions in generalized Oldroyd-B fluid. Appl. Math. Mech. Engl. Edn. 33, 411–426 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Khan, M., Hayat, T., Asghar, S.: Exact solution for MHD flow of a generalized Oldroyd-B fluid with modified Darcy’s law. Int. J. Eng. Sci. 44, 333–339 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Khan, M., Maqbool, K., Hayat, T.: Influence of Hall current on the flows of a generalized Oldroyd-B fluid in a porous space. Acta Mech. 184, 1–13 (2006)

    MATH  Google Scholar 

  33. Abro, K.A., Hussain, M., Baig, M.M.: Slippage of magnetohydrodynamic fractional generalized Oldroyd-B fluid in porous medium. Prog. Fract. Differ. Appl. 3, 69–80 (2017)

    Google Scholar 

  34. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100, 128103 (2008)

    Google Scholar 

  36. Momani, S.: Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl. Math. Comput. 170, 1126–1134 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Ming, C., Liu, F., Zheng, L., Turner, I., Anh, V.: Analytical solutions of multi-term time fracdtional differential equations and application to unsteady flows of generalized viscoelastic fluid. Comput. Math. Appl. 72, 2084–2097 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Jiang, X.Y., Qi, H.T.: Thermal wave model of bioheat transfer with modified Riemann–Lioubille fractional derivative. J. Phys. A Math. Theor. 45, 831–842 (2012)

    Google Scholar 

  39. Bazhlekova, E., Bazhlekov, I.: Viscoelastic flows with fractional derivative models: computational approach by convolutional calculus of Dimovski. Fract. Calc. Appl. Anal. 17, 954–976 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Feng, L.B., Liu, F., Turner, I., Zhuang, P.: Numerical methods and analysis for simulating the flow of a generalized Oldroyd-B fluid between two infinite parallel rigid plates. Int. J. Heat Mass Transf. 115, 1309–1320 (2017)

    Google Scholar 

  41. Feng, L.B., Liu, F., Turner, I.: Novel numerical analysis of multi-term time frctional viscoelastic non-Newtonian fluid models for simulating unsteady MHD couette flow of a generalized Oldroyd-B fluid. Fract. Calc. Appl. Anal. 21, 1073–1103 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Liu, Z.T., Lü, S.J., Liu, F.W.: Fully discrete spectral methods for solving time fractional nonlinear Sine-Gordon equation with smooth and non-smooth solutions. Appl. Math. Comput. 333, 213–224 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Bernardi, C., Maday, Y.: Approximations Spectrales de problems aux Limites Elliptiques. Spring, Berlin (1992)

    MATH  Google Scholar 

  45. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Liu, Y., Liu, F., Feng, L., Xin, B.: Novel numerical analysis for simulating the generalized 2D multi-term time fractional Oldroyd-B fluid model. arXiv:1903.07816

  47. Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)

    MathSciNet  MATH  Google Scholar 

  48. Böttcher, A., Silbermann, B.: Analysis of Toeplitz Operators, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongGuang Sun.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (Nos. 11801060, 11572112 and 11972148).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Sun, H., Yin, X. et al. Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation. Z. Angew. Math. Phys. 71, 21 (2020). https://doi.org/10.1007/s00033-019-1244-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1244-6

Keywords

Mathematics Subject Classification

Navigation