Skip to main content
Log in

Blow-up phenomena for the generalized FORQ/MCH equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the generalized FORQ/MCH equation, which includes the celebrated Fokas–Olver–Rosenau–Qiao equation (or also called the modified Camassa–Holm equation). Firstly, a priori estimates in the transport equation theory and 1-D Morse-type estimates were applied to derive a blow-up criterion. Then, we exploit the characteristic ordinary differential equation to construct a conservative property, which leads to the precise blow-up scenario. Finally, making use of the fine structure and conservation laws, we present a blow-up result for the strong solutions with respect to the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäklund transformations and hereditary symmetries. Phys D: Nonlinear Phenom. 4(1), 47–66 (1981)

    MATH  Google Scholar 

  2. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Camassa, R., Holm, D.D., Hyman, J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    MATH  Google Scholar 

  4. Dai, H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod. Acta Mech. 127(1–4), 193–207 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. Ser. A: Math.Phys Eng. Sci. 457, 953–970 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Constantin, A.: The trajectories of particles in Stokes waves. Invent. math. 166(3), 523–535 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44(3), 423–431 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173(1), 559–568 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181(2), 229–243 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 26(2), 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Annales de l’institut Fourier 50(2), 321–362 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233(1), 75–91 (2000)

    MathSciNet  MATH  Google Scholar 

  13. McKean, H.P.: Breakdown of the Camassa–Holm equation. Commun. Pure Appl. Math. 57(3), 416–418 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183(2), 215–239 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 5(01), 1–27 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Constantin, A., Strauss, W.A.: Stability of the Camassa–Holm Solitons. J. Nonlinear Sci. 12(4), 415–422 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Constantin, A., Strauss, W.A.: Stability of peakons. Commun. Pure Appl. Math. 53(5), 603–610 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Fokas, A.S.: On a class of physically important integrable equations. Physica D 87(1–4), 145–150 (1995)

    MathSciNet  MATH  Google Scholar 

  19. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Physica D 95(3–4), 229–243 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Olver, P.J., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53(2), 1900 (1996)

    MathSciNet  Google Scholar 

  21. Qiao, Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J math. phys. 47(11), 112701 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Qiao, Z.: New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W-shape peak solitons. J. Math. Phys. 48(8), 082701 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Fu, Y., Gui, G., Liu, Y., et al.: On the Cauchy problem for the integrable modified Camassa–Holm equation with cubic nonlinearity. J. Differ. Equ. 255(7), 1905–1938 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Gui, G., Liu, Y., Olver, P.J., et al.: Wave-breaking and peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319(3), 731–759 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Himonas, A.A., Mantzavinos, D.: The Cauchy problem for the Fokas–Olver–Rosenau–Qiao equation. Nonlinear Anal: Theory 95, 499–529 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Liu, Y., Olver, P.J., Qu, C., et al.: On the blow-up of solutions to the integrable modified Camassa–Holm equation. Anal. Appl. 12(04), 355–368 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Chen, R.M., Liu, Y., Qu, C., et al.: Oscillation-induced blow-up to the modified Camassa–Holm equation with linear dispersion. Adv. Math. 272, 225–251 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Himonas, A.A., Mantzavinos, D.: Hölder continuity for the Fokas–Olver–Rosenau–Qiao equation. J. Nonlinear Sci. 24(6), 1105–1124 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Liu, X., Liu, Y., Qu, C.: Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation. Adv. Math. 255, 1–37 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, Q.: Global wellposedness of cubic Camassa–Holm equations. Nonlinear Anal. 133, 61–73 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Qu, C., Liu, X., Liu, Y.: Stability of peakons for an integrable modified Camassa–Holm equation with cubic nonlinearity. Commun. Math. Phys. 322(3), 967–997 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Recio, E., Anco, S.C.: Conserved norms and related conservation laws for multi-peakon equations. J. Phys. A: Math. Theory 51(6), 065203 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Anco, S.C., Recio, E.: A general family of multi-peakon equations and their properties. J. Phys. A: Math. Theory 52(12), 125203 (2019)

    Google Scholar 

  34. Guo, Z., Liu, X., Liu, X., et al.: Stability of peakons for the generalized modified Camassa–Holm equation. J Differ. Equ. 266(12), 7749–7779 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  36. Liu, X.: Stability in the energy space of the sum of N peakons for a modified Camassa–Holm equation with higher-order nonlinearity. J. Math. Phys. 59(12), 121505 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Liu, X.: Orbital stability of peakons for a modified Camassa–Holm equation with higher-order nonlinearity. Discret. Contin. Dyn. Syst. A 38(11), 5505–5521 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Yang, M., Li, Y., Zhao, Y.: On the Cauchy problem of generalized Fokas–Olver–Resenau–Qiao equation. Appl. Anal. 97(13), 2246–2268 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Danchin, R.: Fourier analysis methods for PDEs, Lecture notes (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojie Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S. Blow-up phenomena for the generalized FORQ/MCH equation. Z. Angew. Math. Phys. 71, 20 (2020). https://doi.org/10.1007/s00033-019-1241-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1241-9

Keywords

Mathematics Subject Classification

Navigation