Skip to main content
Log in

Multiscale modeling of magnetorheological suspensions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We develop a multiscale approach to describe the behavior of a suspension of solid magnetizable particles in a viscous non-conducting fluid in the presence of an externally applied magnetic field. By upscaling the quasistatic Maxwell equations coupled with the Stokes’ equations, we are able to capture the magnetorheological effect. The model we obtain generalizes the one introduced by Nueringer and Rosensweig (Phys Fluids 7:1927–1937, 1964) and Rosensweig (Ferrohydrodynamics, Dover Publications, Mineola, 2014) for quasistatic phenomena. We derive the macroscopic constitutive properties explicitly in terms of the solutions of local problems. The effective coefficients have a nonlinear dependence on the volume fraction when chain structures are present. The velocity profiles computed for some simple flows exhibit an apparent yield stress, and the flow profile resembles a Bingham fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bossis, G., Lacis, S., Meunier, A., Volkova, O.: Magnetorheological fluids. J. Magn. Magn. Mater. 252, 224–228 (2002)

    Article  Google Scholar 

  2. Condon, E.H., Odishaw, H.: Handbook of Physics. McGraw-Hill, New York (1958)

    Google Scholar 

  3. Goldasz, J., Sapinski, B.: Insight into Magnetorheological Shock Absorbers. Springer, Berlin (2015)

    Book  Google Scholar 

  4. Halsey, T.C.: Electrorheological fluids. Science 258, 761–766 (1992)

    Article  Google Scholar 

  5. Hecht, F.: New development in freefem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  Google Scholar 

  6. Hoppe, R.W., Litvinov, W.G.: Modeling, simulation and optimization of electrorheological fluids. In: Glowinski, R., Xu, J. (eds.) Numerical Methods for Non-Newtonian Fluids, Handbook of Numerical Analysis, pp. 719–793. Elsevier, Amsterdam (2011)

    Chapter  Google Scholar 

  7. Levy, T.: Suspension de particules solides soumises á des couples. J. Méch. Théor. Appli. Numéro Special, 53–71 (1985)

  8. Levy, T., Hsieh, R.K.T.: Homogenization mechanics of a non-dilute suspension of magnetic particles. Int. J. Eng. Sci. 26, 1087–1097 (1988)

    Article  Google Scholar 

  9. Levy, T., Sanchez-Palencia, E.: Einstein-like approximation for homogenization with small concentration. i. Elliptic problems. Nonlinear Anal. 9, 1243–1254 (1985)

    Article  MathSciNet  Google Scholar 

  10. Lipton, R., Vernescu, B.: Homogenization of two-phase emulsions. Proc. R. Soc. Edinb. 124A, 1119–1134 (1994)

    Article  Google Scholar 

  11. Lopez-Lopez, M.T., Kuzhir, P., Lacis, S., Gonzalez-Caballero, F., Duran, J.D.G.: Magnetorheology for suspensions of solid particles dispersed in ferrofluids. J. Phys. Condens. Matter 18, 2803–2813 (2006)

    Article  Google Scholar 

  12. Mei, C.C., Vernescu, B.: Homogenization methods for multiscale mechanics. World Scientific, Singapore (2010)

    Book  Google Scholar 

  13. Milton, G.: The Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  14. Nika, G., Vernescu, B.: Asymptotics for dilute emulsions with surface tension. J. Elliptic Parabol. Equ. 1, 215–230 (2015)

    Article  MathSciNet  Google Scholar 

  15. Nueringer, J.L., Rosensweig, R.E.: Ferrohydrodynamics. Phys. Fluids 7, 1927–1937 (1964)

    Article  MathSciNet  Google Scholar 

  16. Perlak, J., Vernescu, B.: Constitutive equations for electrorheological fluids. Rev. Roum. Math. 45, 287–297 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Rabinow, J.: The magnetic fluid clutch. AIEE Trans. 67(17—-18), 1308 (1948)

    Google Scholar 

  18. Rosensweig, R.E.: Ferrohydrodynamics. Dover Publications, Mineola (2014)

    Google Scholar 

  19. Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics. Springer, Berlin (2000)

    Book  Google Scholar 

  20. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics. Springer, Berlin (1980)

    MATH  Google Scholar 

  21. Shliomis, M.I.: Effective viscosity of magnetic suspensions. Sov. J. Exp. Theor. Phys. 34, 1291–1294 (1972)

    Google Scholar 

  22. Tao, R.: Super-strong magnetorheological fluids. J. Phys. Condens. Matter 13, 979–999 (2001)

    Article  Google Scholar 

  23. Vernescu, B.: Multiscale analysis of electrorheological fluids. Int. J. Mod. Phys. B 16, 2643–2648 (2002)

    Article  Google Scholar 

  24. Winslow, W.M.: Induced fibration of suspensions. J. Appl. Phys. 20, 1137–1140 (1949)

    Article  Google Scholar 

  25. Chen, G., Yang, Y., Lin, L., Li, W.: Magnetorheological properties of aqueous ferrofluids. Soc. Rheol. Jpn. 34, 25–31 (2005)

    Google Scholar 

Download references

Acknowledgements

G.N. was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy, The Berlin Mathematics Research Center MATH+ (EXC-2046/1, Project ID: 390685689) in project AA2-1, and would like to express his gratitude to Konstantinos Danas and Andrei Constantinescu for their fruitful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigor Nika.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nika, G., Vernescu, B. Multiscale modeling of magnetorheological suspensions. Z. Angew. Math. Phys. 71, 14 (2020). https://doi.org/10.1007/s00033-019-1238-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1238-4

Keywords

Mathematics Subject Classification

Navigation