Skip to main content
Log in

Propagation phenomena for a bistable Lotka–Volterra competition system with advection in a periodic habitat

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is concerned with a Lotka–Volterra competition system with advection in a periodic habitat

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial u_1}{\partial t}=d_1(x)\frac{\partial ^2 u_1}{\partial x^2}-a_1(x)\frac{\partial u_1}{\partial x} +u_1\left( b_1(x)-a_{11}(x)u_1-a_{12}(x)u_2\right) ,\\ \frac{\partial u_2}{\partial t}=d_2(x)\frac{\partial ^2 u_2}{\partial x^2}-a_2(x)\frac{\partial u_2}{\partial x} +u_2\left( b_2(x)-a_{21}(x)u_1-a_{22}(x)u_2\right) , \end{array}\right. } t>0,~x\in {\mathbb {R}}, \end{aligned}$$

where \(d_i(\cdot )\), \(a_i(\cdot )\), \(b_i(\cdot )\), \(a_{ij}(\cdot )\) \((i,j=1,2)\) are L-periodic functions in \(C^\nu ({\mathbb {R}})\) for some \(L>0\). Under certain assumptions, the system is bistable between two (linearly) stable periodic steady state solutions \((0,u_2^*(x))\) and \((u_1^*(x),0)\). We establish the existence of pulsating traveling front \((U_1(x,x+ct),U_2(x,x+ct))\) connecting \((0,u_2^*(x))\) to \((u_1^*(x),0)\). Furthermore, we confirm that the pulsating traveling front is globally asymptotically stable for wave-like initial values. We finally show that such pulsating traveling front is unique (up to translation). The methods involve the sub- and supersolutions, spreading speeds of monostable systems, and the monotone semiflows approach. From the biological point of view, this kind of pulsating traveling front provides a spreading way for two strongly competing species interacting in a heterogeneous habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Averill, I.E.: The effect of intermediate advection on two competing species, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), The Ohio State University (2011)

  2. Averill, I., Lam, K.Y., Lou, Y.: The Role of Advection in a Two-Species Competition Model: A Bifurcation Approach, vol. 245. AMS, Providence (2017)

    MATH  Google Scholar 

  3. Bao, X., Wang, Z.C.: Existence and stability of time periodic traveling waves for a periodic bistable Lotka–Volterra competition system. J. Differ. Equ. 255, 2402–2435 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: I- Species persistence. J. Math. Biol. 51, 75–113 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: II- Biological invasions and pulsating traveling fronts. J. Math. Pures Appl. 84, 1101–1146 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Hamel, F.: Reaction-Diffusion Equations and Propagation Phenomena. Applied Mathematical Sciences, Providence (2014)

    Google Scholar 

  8. Chen, X., Hambrock, R., Lou, Y.: Evolution of conditional dispersal: a reaction-diffusion-advection model. J. Math. Biol. 57, 361–386 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Chen, X., Lou, Y.: Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications. Indiana Univ. Math. J. 61, 45–80 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Cosner, C.: Reaction–diffusion–advection models for the effects and evolution of dispersal. Discrete Contin. Dyn. Syst. 34, 1701–1745 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Cosner, C., Lazer, A.: Stable coexistence in the Volterra–Lotka competition model with diffusion. SIAM J. Math. Anal. 44, 1112–1132 (1984)

    MathSciNet  MATH  Google Scholar 

  12. Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol. 37, 61–83 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Ding, W., Hamel, F., Zhao, X.Q.: Bistable pulsating fronts for reaction–diffusion equations in a periodic habitat. Indiana Univ. Math. J. 66, 1189–1265 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Ding, W., Hamel, F., Zhao, X.Q.: Transition fronts for periodic bistable reaction–diffusion equations. Calc. Var. Part. Differ. Equ. 54, 2517–2551 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Du, L.J., Li, W.T., Wang, J.B.: Invasion entire solutions in a time periodic Lotka–Volterra competition system with diffusion. Math. Biosci. Eng. 14, 1187–1213 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Du, L.J., Li, W.T., Wang, J.B.: Asymptotic behavior of traveling fronts and entire solutions for a periodic bistable competition–diffusion system. J. Differ. Equ. 265, 6210–6250 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Du, L.J., Li, W.T., Wu, S.L.: Pulsating fronts and front-like entire solutions for a reaction–advection–diffusion competition system in a periodic habitat. J. Differ. Equ. 266, 8419–8458 (2019)

    MATH  Google Scholar 

  18. Ducrot, A., Giletti, T., Matano, H.: Existence and convergence to a propagating terrace in one-dimensional reaction–diffusion equations. Trans. Am. Math. Soc. 366, 5541–5566 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Ducrot, A.: A multi-dimensional bistable nonlinear diffusion equation in a periodic medium. Math. Ann. 366, 783–818 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Fang, J., Zhao, X.Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Furter, J., López-Gómez, J.: On the existence and uniqueness of coexistence states for the Lotka–Volterra competition model with diffusion and spatially dependent coefficients. Nonlinear Anal. 25, 363–398 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Gardner, R.: Existence and stability of traveling wave solutions of competition models: a degree theoretic approach. J. Differ. Equ. 44, 343–364 (1982)

    MATH  Google Scholar 

  23. Girardin, L.: Competition in periodic media: I- Existence of pulsating fronts. Discrete Contin. Dyn. Syst. Ser. B. 22, 1341–1360 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Giletti, T., Rossi, L.: Pulsating solutions for multidimensional bistable and multistable equations, arXiv:1901.07256 (2019)

  25. He, X., Ni, W.M.: Global dynamics of the Lotka–Volterra competition-diffusion system: diffusion and spatial heterogeneity I. Comm. Pure Appl. Math. 69, 981–1014 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Longman Scientific and Technical, Harlow (1991)

    MATH  Google Scholar 

  27. Kinezaki, N., Kawasaki, K., Takasu, F., Shigesada, N.: Modeling biological invasion into periodically fragmented environments. Theor. Popul. Biol. 64, 291–302 (2003)

    MATH  Google Scholar 

  28. Kishimoto, K.: Instability of non-constant equilibrium solutions of a system of competition–diffusion equations. J. Math. Biol. 13, 105–114 (1981)

    MathSciNet  MATH  Google Scholar 

  29. Lam, K.Y., Ni, W.: Uniqueness and complete dynamics of the Lotka–Volterra competition diffusion system. SIAM J. Appl. Math. 72, 1695–1712 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Liang, X., Zhao, X.Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm. Pure Appl. Math. 60, 1–40 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Liang, X., Zhao, X.Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funt. Anal. 259, 857–903 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Lou, Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 223, 400–426 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Lou, Y., Lutscher, F.: Evolution of dispersal in open advective environments. J. Math. Biol. 69, 1319–1342 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Lou, Y., Nie, H., Wang, Y.: Coexistence and bistability of a competition model in open advective environments. Math. Biosci. 306, 10–19 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Lutscher, F., McCauley, E., Lewis, M.A.: Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor. Popul. Biol. 71, 267–277 (2007)

    MATH  Google Scholar 

  36. Mckenzie, H.W., Jin, Y., Jacobsen, J., Lewis, M.A.: \(R_0\) analysis of a spatiotemporal model for a stream population. SIAM J. App. Dyn. Syst. 11, 567–596 (2012)

    MATH  Google Scholar 

  37. Shigesada, N., Kawasaki, K.: Biological Invasions: Theory and Practice. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford (1997)

    Google Scholar 

  38. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  39. Wang, Z.C.: Traveling curved fronts in monotone bistable systems. Discrete Contin. Dyn. Syst. 32, 2339–2374 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Xin, J.: Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity. J. Dyn. Differ. Equ. 3, 541–573 (1991)

    MathSciNet  MATH  Google Scholar 

  42. Xin, J.: Front propagation in heterogeneous media. SIAM Rev. 42, 161–230 (2000)

    MathSciNet  MATH  Google Scholar 

  43. Xu, D., Zhao, X.Q.: Bistable waves in an epidemic model. J. Dyn. Differ. Equ. 16, 679–707 (2004)

    MathSciNet  MATH  Google Scholar 

  44. Yu, X., Zhao, X.Q.: Propagation phenomena for a reaction-advection-diffusion competition model in a periodic habitat. J. Dyn. Differ. Equ. 29, 41–66 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Zhang, Y., Zhao, X.Q.: Bistable traveling waves in competitive recursion systems. J. Differ. Equ. 252, 2630–2647 (2012)

    MATH  Google Scholar 

  46. Zhang, Y., Zhao, X.Q.: Bistable travelling waves for a reaction and diffusion model with seasonal succession. Nonlinearity 26, 691–709 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Zhao, X.Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    MATH  Google Scholar 

  48. Zhao, X.Q., Zhou, P.: On a Lotka–Volterra competition model: the effects of advection and spatial variation. Calc. Var. Partial Differ. Equ. 55, 73 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Zhou, P.: On a Lotka–Volterra competition system: diffusion vs advection. Calc. Var. Partial Differ. Equ. 55, 137 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Zhou, P., Xiao, D.: Global dynamics of a classical Lotka–Volterra competition-diffusion-advection system. J. Funct. Anal. 275, 356–380 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Wenxian Shen (Auburn University) for some valuable conversations. The authors are also grateful to the anonymous referees for their careful reading and helpful suggestions that led to improvements of our original manuscript. L.-J. Du was partially supported by FRFCU (lzujbky-2017-it59), W.-T. Li was partially supported by NSF of China (11731005, 11671180) and FRFCU (lzujbky-2017-ct01), and S.-L. Wu partially supported by NSF of China (11671315) and NSF of Shaanxi Province of China (2017JM1003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Tong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, LJ., Li, WT. & Wu, SL. Propagation phenomena for a bistable Lotka–Volterra competition system with advection in a periodic habitat. Z. Angew. Math. Phys. 71, 11 (2020). https://doi.org/10.1007/s00033-019-1236-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1236-6

Keywords

Mathematics Subject Classification

Navigation