Skip to main content
Log in

Concentration behavior of nonlinear Hartree-type equation with almost mass critical exponent

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the following nonlinear Hartree-type equation

$$\begin{aligned} -\Delta u+V(x)u-a\left( \frac{1}{|x|^\gamma }*|u|^2\right) u=\lambda u,~\text {in}~{\mathbb {R}}^N, \end{aligned}$$

where \(a>0\), \(N\ge 3\), \(\gamma \in (1,2)\) and V(x) is an external potential. We first study the asymptotic behavior of the ground state of equation for \(V(x)\equiv 1\), \(a=1\) and \(\lambda =0\) as \(\gamma \nearrow 2\). Then, we consider the case of some trapping potential V(x) and show that all the mass of ground states concentrate at a global minimum point of V(x) as \(\gamma \nearrow 2\), which leads to symmetry breaking. Moreover, the concentration rate for maximum points of ground states will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choquard, P., Stubbe, J., Vuffray, M.: Stationary solutions of the Schrödinger–Newton model—an ODE approach. Differ. Integr. Equ. 21, 665–679 (2008)

    MATH  Google Scholar 

  2. Cingolani, S., Secchi, S., Squassina, M.: Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. Sect. A 140, 973–1009 (2010)

    Article  Google Scholar 

  3. Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012)

    Article  MathSciNet  Google Scholar 

  4. Clapp, M., Salazar, D.: Positive and sign-changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407, 1–15 (2013)

    Article  MathSciNet  Google Scholar 

  5. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  6. Deng, Y.B., Lu, L., Shuai, W.: Constraint minimizers of mass critical Hartree energy functionals, existence and mass concentration. J. Math. Phys. 56, 061503 (2015)

    Article  MathSciNet  Google Scholar 

  7. Deng, Y.B., Guo, Y.J., Lu, L.: On the collapse and concentration of Bose–Einstein condensates with inhomogeneous attractive interactions. Calc. Var. Part. Differ. Equ. 54, 99–118 (2015)

    Article  MathSciNet  Google Scholar 

  8. Gu, L.J., Zeng, X.Y., Zhou, H.S.: Eigenvalue problem for a p-Laplacian equation with trapping potentials. Nonlinear Anal. 148, 212–227 (2017)

    Article  MathSciNet  Google Scholar 

  9. Guo, Y.J., Seiringer, R.: On the mass concentration for Bose–Einstein condensates with attactive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  Google Scholar 

  10. Guo, Y.J., Zeng, X.Y., Zhou, H.S.: Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations. J. Differ. Equ. 256, 2079–2100 (2014)

    Article  Google Scholar 

  11. Guo, Y.J., Zeng, X.Y., Zhou, H.S.: Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 809–828 (2016)

    Article  MathSciNet  Google Scholar 

  12. Han, Q., Lin, F.H.: Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1. Courant Institute of Mathematical Science/AMS, New York (2011)

    Google Scholar 

  13. Huang, J., Zhang, J.: Nonlinear Hartree equation in high energy-mass. Nonlinear Anal. Real World Appl. 34, 97–109 (2017)

    Article  MathSciNet  Google Scholar 

  14. Kavian, O., Weissler, F.B.: Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation. Mich. Math. J. 41, 151–173 (1994)

    Article  Google Scholar 

  15. Li, G.B., Ye, H.Y.: The existence of positive solutions with prescribed $L^2$-norm for nonlinear Choquard equations. J. Math. Phys. 55, 121501 (2014)

    Article  MathSciNet  Google Scholar 

  16. Li, S., Xiang, J.L., Zeng, X.Y.: Ground states of nonlinear Choquard equations with muti-well potentials. J. Math. Phys. 57, 081515 (2016)

    Article  MathSciNet  Google Scholar 

  17. Lieb, E. H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976/77)

    Article  MathSciNet  Google Scholar 

  18. Lieb, E.H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  19. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  Google Scholar 

  20. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  21. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  Google Scholar 

  22. Moroz, V., Van Schaftingen, J.: Semi-classical states for the Choquard equation. Calc. Var. Part. Differ. Equ. 52, 199–235 (2015)

    Article  MathSciNet  Google Scholar 

  23. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998)

    Article  Google Scholar 

  24. Pekar, S.: Untersuchungüber die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  25. Seok, J.: Limit profiles and uniqueness of ground state to the nonlinear Choquard equation. Adv. Nonlinear Anal. 8, 1083–1098 (2019)

    Article  MathSciNet  Google Scholar 

  26. Shi, Q., Peng, C.: Wellposedness for semirelativistic Schrödinger equation with power-type nonlinearity. Nonlinear Anal. 178, 133–144 (2019)

    Article  MathSciNet  Google Scholar 

  27. Shi, Q., Wang, S.: Klein-Gordon-Zakharov system in energy space: Blow-up profile and subsonic limit. Math. Meth. Appl. Sci. 42, 3211–3221 (2019)

    Article  MathSciNet  Google Scholar 

  28. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  29. Van Schaftingen, J., Xia, J.: Choquard equations under confining external potentials. NoDEA Nonlinear Differ. Equ. Appl. 24, 24 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wang, T., Yi, T.S.: Uniqueness of positive solutions of the Choquard type equations. Appl. Anal. 96, 409–417 (2017)

    Article  MathSciNet  Google Scholar 

  31. Wang, Q.X., Zhao, D.: Existence and mass concentration of 2D attractive Bose–Einstein condensates with periodic potentials. J. Differ. Equ. 262, 2684–2704 (2017)

    Article  MathSciNet  Google Scholar 

  32. Xiang, C.L.: Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions. Calc. Var. Part. Differ. Equ. 55, 134 (2016)

    Article  MathSciNet  Google Scholar 

  33. Ye, H.Y.: Mass minimizers and concentration for nonlinear Choquard equations in ${\mathbb{R}}^N$. Topol. Methods Nonlinear Anal. 48, 393–417 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qingxuan Wang: This work is supported by the NSFC Grants 11801519 and 11475073.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, D. & Wang, Q. Concentration behavior of nonlinear Hartree-type equation with almost mass critical exponent. Z. Angew. Math. Phys. 70, 128 (2019). https://doi.org/10.1007/s00033-019-1172-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1172-5

Keywords

Mathematics Subject Classification

Navigation