Skip to main content
Log in

Averaging principle for Korteweg–de Vries equation with a random fast oscillation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This work concerns averaging principle for Korteweg–de Vries equation perturbed by a oscillating term which arises from the solution of a stochastic reaction–diffusion equation. This model can be translated into multiscale stochastic partial differential equations. Under some suitable conditions, we show that the slow component strongly converges to the solution of a single Korteweg–de Vries equation with a modified coefficient (averaged equation). To be more precise, by using the Khasminskii technique, we can obtain the strong convergence rate of the slow component towards the solution of the corresponding averaged equation, and as a consequence, the multiscale system can be reduced to the averaged equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bao, J., Yin, G., Yuan, C.: Two-time-scale stochastic partial differential equations driven by \(\alpha \)-stable noises: averaging principles. Bernoulli 23, 645–669 (2017)

    Article  MathSciNet  Google Scholar 

  2. Boussinesq, J.: Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants à lAcad des Sci Inst Nat France, vol. 23, pp. 1–680 (1877)

  3. Bréhier, C.E.: Strong and weak orders in averaging for SPDEs. Stoch. Process. Appl. 122, 2553–2593 (2012)

    Article  MathSciNet  Google Scholar 

  4. Cerrai, S.: Averaging principle for systems of reaction–diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. SIAM J. Math. Anal. 43, 2482–2518 (2011)

    Article  MathSciNet  Google Scholar 

  5. Cerrai, S., Freidlin, M.I.: Averaging principle for a class of stochastic reaction diffusion equations. Probab. Theory Relat. Fields 144, 137–177 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cerrai, S., Khasminkii, A.: Type averaging principle for stochastic reaction–diffusion equations. Ann. Appl. Probab. 19, 899–948 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chu, J., Coron, J.-M., Shang, P.: Asymptotic stability of a nonlinear Korteweg–de Vries equation with critical lengths. J. Differ. Equ. 259, 4045–4085 (2015)

    Article  MathSciNet  Google Scholar 

  8. de Bouard, A., Debussche, A.: On the stochastic Korteweg–de Vries equation. J. Funct. Anal. 154, 215–251 (1998)

    Article  MathSciNet  Google Scholar 

  9. Dong, Z., Sun, X., Xiao, H., Zhai, J.: Averaging principle for one dimensional stochastic Burgers equation. J. Differ. Equ. 265, 4749 (2018)

    Article  MathSciNet  Google Scholar 

  10. Fu, H., Duan, J.: An averaging principle for two-scale stochastic partial differential equations. Stoch. Dyn. 11, 353–367 (2011)

    Article  MathSciNet  Google Scholar 

  11. Fu, H., Liu, J.: Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations. J. Math. Anal. Appl. 384, 70–86 (2011)

    Article  MathSciNet  Google Scholar 

  12. Fu, H., Wan, L., Wang, Y., Liu, J.: Strong convergence rate in averaging principle for stochastic FitzHugh–Nagumo system with two time-scales. J. Math. Anal. Appl. 416, 609–628 (2014)

    Article  MathSciNet  Google Scholar 

  13. Fu, H., Wan, L., Liu, J.: Strong convergence in averaging principle for stochastic hyperbolic–parabolic equations with two time-scales. Stoch. Process. Appl. 125, 3255–3279 (2015)

    Article  MathSciNet  Google Scholar 

  14. Fu, H., Wan, L., Liu, J., Liu, X.: Weak order in averaging principle for stochastic wave equation with a fast oscillation. Stoch. Process. Appl. 8, 2557–2580 (2018)

    Article  MathSciNet  Google Scholar 

  15. Gao, P.: Carleman estimate and unique continuation property for the linear stochastic Korteweg–de Vries equation. Bull. Aust. Math. Soc. 90, 283–294 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gao, P.: \(\varepsilon \)-Insensitizing controls for the linear stochastic Korteweg–de Vries equation. Appl. Anal. 95, 1919–1929 (2016)

    Article  MathSciNet  Google Scholar 

  17. Gao, P.: The stochastic Swift–Hohenberg equation. Nonlinearity 30(9), 3516–3559 (2017)

    Article  MathSciNet  Google Scholar 

  18. Gao, P.: The stochastic Korteweg–de Vries equation on a bounded domain. Appl. Math. Comput. 310, 97–111 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Glass, O., Guerrero, S.: Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60, 61–100 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Guo, B., Yang, L.: The global attractors for the periodic initial value problem for a coupled non-linear wave equation. Math. Methods Appl. Sci. 19(2), 131–144 (1996)

    Article  MathSciNet  Google Scholar 

  21. Khasminskii, R.Z.: On the principle of averaging the Itô stochastic differential equations. Kibernetika 4, 260–279 (1968). (in Russian)

    Google Scholar 

  22. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  23. Lee, C.Y., Setayeshgar, L.: The large deviation principle for a stochastic Korteweg–de Vries equation with additive noise. Markov Process. Relat. Fields 21, 869–886 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. I, Grundlehren der mathematischen Wissenschaften, Band 181. Springer, New York (translated fromthe French by P. Kenneth) (1972)

  25. Oh, T.: Periodic stochastic Korteweg–de Vries equation with additive space–time white noise. Anal. PDE 2, 281–304 (2010)

    Article  MathSciNet  Google Scholar 

  26. Pei, B., Xu, Y., Wu, J.L.: Two-time-scales hyperbolic–parabolic equations driven by Poisson random measures: existence, uniqueness and averaging principles. J. Math. Anal. Appl. 447, 243–268 (2017)

    Article  MathSciNet  Google Scholar 

  27. Printems, J.: The stochastic Korteweg–de Vries equation in \(L^{2}(\mathbb{R})\). J. Differ. Equ. 153, 338–373 (1999)

    Article  MathSciNet  Google Scholar 

  28. Rosier, L.: Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var. 2, 33–55 (1997)

    Article  MathSciNet  Google Scholar 

  29. Rothe, F.: Global Solutions of Reaction–Diffusion Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  30. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. SIAM, University City (1995)

    Book  Google Scholar 

  31. Wang, G., Guo, B.: Stochastic Korteweg–de Vries equation driven by fractional Brownian motion. Discrete Contin. Dyn. Syst. 35, 5255–5272 (2015)

    Article  MathSciNet  Google Scholar 

  32. Wang, W., Roberts, A.J.: Average and deviation for slow–fast stochastic partial differential equations. J. Differ. Equ. 253, 1265–1286 (2012)

    Article  MathSciNet  Google Scholar 

  33. Xu, J.: \(L^{p}\)-strong convergence of the averaging principle for slow–fast SPDEs with jumps. J. Math. Anal. Appl. 445, 342–373 (2017)

    Article  MathSciNet  Google Scholar 

  34. Xu, J., Miao, Y., Liu, J.: Strong averaging principle for slow–fast SPDEs with poisson random measures. Discrete Contin. Dyn. Syst. Ser. B 20, 2233–2256 (2015)

    Article  MathSciNet  Google Scholar 

  35. Xu, J., Miao, Y., Liu, J.: Strong averaging principle for two-time-scale non-autonomous stochastic FitzHugh–Nagumo system with jumps. J. Math. Phys. 57, 092704 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the referees and the editor for their careful comments and useful suggestions. I sincerely thank Professor Yong Li for many useful suggestions and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC Grant (11601073).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P. Averaging principle for Korteweg–de Vries equation with a random fast oscillation. Z. Angew. Math. Phys. 70, 123 (2019). https://doi.org/10.1007/s00033-019-1165-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1165-4

Keywords

Mathematics Subject Classification

Navigation