Skip to main content
Log in

The fine structure of Weber’s hydrogen atom: Bohr–Sommerfeld approach

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we determine in second order in the fine structure constant the energy levels of Weber’s Hamiltonian that admit a quantized torus. Our formula coincides with the formula obtained by Wesley using the Schrödinger equation for Weber’s Hamiltonian. We follow the historical approach of Sommerfeld. This shows that Sommerfeld could have discussed the fine structure of the hydrogen atom using Weber’s electrodynamics if he had been aware of the at-his-time-already-forgotten theory of Wilhelm Weber (1804–1891).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Differences of these energy levels give rise to the Rydberg formula

    $$\begin{aligned} \frac{1}{2n^2}-\frac{1}{2m^2},\quad n,m\in {\mathbb {N}}, m>n, \end{aligned}$$

    that corresponds to the energy of the emitted photon when an electron falls from an excited energy level to a lower one. Historically these differences were first measured in spectroscopy. In 1885, the Swiss school teacher Balmer discovered the formula for the \(n=2\) series, nowadays referred to as the Balmer series; cf. [25, p. 163].

References

  1. Albers, P., Frauenfelder, U., Schlenk, F.: What might a Hamiltonian delay equation be? arXiv:1802.07453 (2018)

  2. Albers, P., Frauenfelder, U., Schlenk, F.: A compactness result for non-local unregularized gradient flow lines. J. Fixed Point Theory Appl. 21(1):Art. 34, 28 (2019). arXiv:1802.07445

  3. Albers, P., Frauenfelder, U., Schlenk, F.: An iterated graph construction and periodic orbits of Hamiltonian delay equations. J. Differ. Equ. 266(5), 2466–2492 (2019). arXiv:1802.07449

    Article  MathSciNet  MATH  Google Scholar 

  4. Assis, A.K.T.: Weber’s Electrodynamics. Springer, Dordrecht (1994)

    Book  Google Scholar 

  5. Belbruno, E.A.: Two-body motion under the inverse square central force and equivalent geodesic flows. Celest. Mech. 15(4), 467–476 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bohr, N.: On the constitution of atoms and molecules, part I. Philos. Mag. 26(151), 1–24 (1913)

    Article  MATH  Google Scholar 

  7. Bush, V.: The force between moving charges. J. Math. Phys. 5(1–4), 129–157 (1926)

    Article  MATH  Google Scholar 

  8. Darwin, C.G.: The wave equations of the electron. Proc. R. Soc. Lond. Ser. A 118, 654–680 (1928)

    Article  MATH  Google Scholar 

  9. Einstein, A.: Zum Quantensatz von Sommerfeld und Epstein. Deutsche Physikalische Gesellschaft Verhandlungen 19, 82–92 (1917)

    Google Scholar 

  10. Frauenfelder, U.: State dependent Hamiltonian delay equations and Neumann one-forms. arXiv:1904.01808 (2019)

  11. Gordon, W.: Die Energieniveaus des Wasserstoffatoms nach der Diracschen Quantentheorie des Elektrons. Zeitschrift für Physik 48(1), 11–14 (1928)

    Article  MATH  Google Scholar 

  12. Goursat, E.: Sur les transformations isogonales en Mécanique. Comptes Rendus des Séances de l’Académie des Sciences 108, 446–448 (1889)

    MATH  Google Scholar 

  13. Graneau, P., Graneau, N.: Newtonian Electrodynamics. World Scientific Publishing Co., Inc., River Edge (1996)

    Book  MATH  Google Scholar 

  14. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics, volume 1 of Interdisciplinary Applied Mathematics. Springer, New York (1990)

    Book  Google Scholar 

  15. Hofer, H., Wysocki, K., Zehnder, E.: Polyfold and Fredholm Theory. arXiv:1707.08941 (2017)

  16. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel (2011). Reprint of the 1994 edition

  17. Keppeler, S.: Semiclassical quantisation rules for the Dirac and Pauli equations. Ann. Phys. 304(1), 40–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Keppeler, S.: Spinning Particles—Semiclassics and Spectral Statistics. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  19. Lamb, W.E., Retherford, R.C.: Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947)

    Article  Google Scholar 

  20. Levi-Civita, T.: Sur la régularisation du problème des trois corps. Acta Math. 42, 99–144 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maxwell, J.C.: On Faraday’s lines of force. Trans. Camb. Philos. Soc. X(I.), 155–229 (1855)

    Google Scholar 

  22. Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. I. Clarendon Press, Oxford (1873)

    MATH  Google Scholar 

  23. Milnor, J.: On the geometry of the Kepler problem. Am. Math. Mon. 90(6), 353–365 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moser, J.: Regularization of Kepler’s problem and the averaging method on a manifold. Commun. Pure Appl. Math. 23, 609–636 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mehra, J., Rechenberg, H.: The Historical Development of Quantum Theory, volume 1, Part 1—The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld: Its Foundation and the Rise of its Difficulties 1900–1925. Springer, New York (1982)

    Google Scholar 

  26. Mehra, J., Rechenberg, H.: The Historical Development of Quantum Theory, volume 5—Erwin Schrödinger and the Rise of Wave Mechanics, Part 2—The Creation of Wave Mechanics; Early Response and Applications 1925–1926. Springer, New York (1987)

  27. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford Graduate Texts in Mathematics, 3rd edn. Oxford University Press, Oxford (2017)

    Book  Google Scholar 

  28. Neumann, C.: Die Principien der Elektrodynamik: eine mathematische Untersuchung. Tübinger Universitätsschriften a. d. J. 1868. H. Laupp, 1868. Reprinted In Mathematischen Annalen, vol. 17, pp. 400–434 (1880)

  29. Neumann, C.: Theoria nova phaenomenis electricis applicanda. Ann. Mate. Pura Appl. (1867–1897) 2(1), 120–128 (1868)

    Article  MATH  Google Scholar 

  30. Neumann, C.: Allgemeine Untersuchungen über das Newton’sche Princip der Fernwirkungen: mit besonderer Rücksicht auf die elektrischen Wirkungen. B. G. Teubner, Leipzig (1896)

    MATH  Google Scholar 

  31. Osipov, Y.S.: The Kepler problem and geodesic flows in spaces of constant curvature. Celest. Mech. 16(2), 191–208 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schweber, S.: QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  33. Sommerfeld, A.: Zur Quantentheorie der Spektrallinien. Ann. Phys. 356(17), 1–94 (1916)

    Article  Google Scholar 

  34. Sommerfeld, A.: Atombau und Spektrallinien. Friedrich Vieweg und Sohn (Braunschweig), Zweite Auflage (1921)

  35. Thomson (Lord Kelvin), W., Tait, P.G.: Treatise on Natural Philosophy, vol. I. Clarendon Press, Oxford (1867)

  36. Thomson (Lord Kelvin), W., Tait, P.G.: Handbuch der Theoretischen Physik. Erster Band. Erster Theil. Translated by H. Helmholtz and G. Wertheim. Friedrich Vieweg und Sohn (Braunschweig) (1871)

  37. Thomson (Lord Kelvin), W., Tait, P.G.: Treatise on Natural Philosophy, volume I, Part I, new edition. Cambridge University Press, Cambridge (1879)

  38. von Helmholtz, H.: Über die Erhaltung der Kraft. Humboldt-Universität zu Berlin, Berlin (1847)

    MATH  Google Scholar 

  39. Weber, W.: Elektrodynamische Maassbestimmungen über ein allgemeines Grundgesetz der elektrischen Wirkung. Abhandlungen bei Begründung der Königl. Sächs. Gesellschaft der Wissenschaften am Tage der zweihundertjährigen Geburtstagfeier Leibnizen’s (1846). Reprinted in Wilhelm Weber’s Werke (Springer, Berlin, 1893), vol. 3, pp. 25–214

  40. Weber, W.: Elektrodynamische Maassbestimmungen insbesondere Zurückführung der Stromintensitäts-Messungen auf mechanisches Maass. Abhandlungen der Königl. Sächs Gesellschaft der Wissenschaften 3, 221–290 (1857). Reprinted in Wilhelm Weber’s Werke (Springer, Berlin, 1893), Vol. 3, pp. 609–676

    Google Scholar 

  41. Weber, W.: Elektrodynamische Maassbestimmungen insbesondere über das Princip der Erhaltung der Energie. Abhandlungen der Königl. Sächs Gesellschaft der Wissenschaften 10, 1–61 (1871). Reprinted in Wilhelm Weber’s Werke (Springer, Berlin, 1894), Vol. 4, pp. 247–299

    Google Scholar 

  42. Wesley, J.P.: Evidence for Weber–Wesley electrodynamics. In: Proceedings Conference on Foundations of Mathematics and Physics, Perugia, Italy, 27–29 September 1989, pp. 289–343 (1989)

  43. Wiederkehr, K.H.: Wilhelm Eduard Weber; Erforscher der Wellenbewegung und der Elektrizität 1804–1891. Band 32 Große Naturforscher. Wissenschaftliche Verlagsgesellschaft M.B.H, Stuttgart (1967)

    Google Scholar 

  44. Wolfschmidt, G., Assis, T., Koch, A.: Wiederkehr, Karl Heinrich: Weber’s Planetary Model of the Atom. Tredition, Hamburg (2011)

    Google Scholar 

  45. Wolfschmidt, G., Assis, T., Koch, A.: Wiederkehr, Karl Heinrich: Weber’s Planeten-Modell des Atoms. Apeiron, Montreal (2018)

    Google Scholar 

  46. Zöllner, J.K.F.: Über die Natur der Cometen: Beiträge zur Geschichte und Theorie der Erkenntnis. Engelmann (Leipzig) (1872)

Download references

Acknowledgements

The authors would like to thank sincerely André Koch Torres Assis for many useful conversations about Weber’s electrodynamics. The paper profited a lot from discussions with Peter Albers and Felix Schlenk about delay equations whom we would like to thank sincerely as well. This article was written during the stay of the first author at the Universidade Estadual de Campinas (UNICAMP) that he would like to thank for hospitality. His visit was supported by UNICAMP and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), processo \(\mathrm {n}^{\mathrm{o}}\) 2017/19725-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Frauenfelder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Weber’s Lagrangian and delayed potentials

In several works, Neumann treated the connection between Weber’s dynamics and delayed potentials, see [28, 29] and [30, Ch. 8]. Neumann explained how Weber’s potential function is related to Hamilton’s principle which in [29] he called “norma suprema et sacrosancta, nullis exceptionibus obvia”.

Strictly speaking, a delay potential only makes sense for loops and not for chords. Hence we abbreviate by \({\mathcal {L}}=C^\infty \big (S^1, {\mathbb {R}}^2_\times \big )\) the free loop space on the punctured plane \({\mathbb {R}}^2_\times :={\mathbb {R}}^2 {\setminus } \{0\}\). For a potential \(V \in C^\infty \big ({\mathbb {R}}^2_\times ,{\mathbb {R}}\big )\) and a constant \(c _{\mathrm{W}}>0\), we define three functions

$$\begin{aligned} {\mathcal {S}}_{\mathrm {kin}}, {\mathcal {S}}_{\mathrm {pot}}, {\mathcal {S}}:{\mathcal {L}} \rightarrow {\mathbb {R}} \end{aligned}$$

by \({\mathcal {S}}={\mathcal {S}}_{\mathrm {kin}}-{\mathcal {S}}_{\mathrm {pot}}\) and by

$$\begin{aligned} {\mathcal {S}}_{\mathrm {kin}}(q):=\frac{1}{2}\int \limits _0^1|q'(t)|^2 \mathrm{d}t,\quad {\mathcal {S}}_{\mathrm {pot}}(q):=\int \limits _0^1 V\Big (q\Big (t-\tfrac{|q(t)|}{c _{\mathrm{W}}}\Big )\Big )\mathrm{d}t. \end{aligned}$$

Physically this means that the potential energy is evaluated at a retarded time. Namely, the position of the proton at the origin has to be transmitted to the electron at speed \(c_{\mathrm{W}}\). It is a strange fact that to obtain Weber’s force this transmission velocity is given by the Weber constant \(c_{\mathrm{W}}\) which, as measured by Weber [40], equals \(\sqrt{2} c\) where c is the speed of light.

We assume that V only depends on the radial coordinate \(V(q)=V(|q|)=V(r)\). Setting \(r(t):=\mathopen |q(t)\mathclose |\) the functional \({\mathcal {S}}_{\mathrm {pot}}\) becomes a function of \(r=r(t)\), still denoted by

$$\begin{aligned} {\mathcal {S}}_{\mathrm {pot}}(r)=\int \limits _0^1 V\Big (r\Big (t-\tfrac{r(t)}{c_\mathrm{W}}\Big )\Big )\mathrm{d}t. \end{aligned}$$

We further abbreviate

$$\begin{aligned} a=\frac{1}{c_{\mathrm{W}}}=\frac{\alpha }{\sqrt{2}},\quad c_{\mathrm{W}}=\sqrt{2} c, \end{aligned}$$

where \(\alpha \) is the fine structure constant.

Setting \(V_r( a,t):=V\big (r\big (t- a r(t)\big )\big )\), we obtain for the partial derivatives in a the formulas

$$\begin{aligned} \frac{\partial }{\partial a}V_r( a,t)=-V'\big (r\big (t- a r(t)\big )\big )r'\big (t- a r(t)\big )r(t) \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \frac{\partial ^2}{\partial a^2}V_r( a,t)&=V''\big (r\big (t- a r(t)\big )\big )r'\big (t- a r(t)\big )^2r(t)^2\\&\quad +V'\big (r\big (t- a r(t)\big )\big )r''\big (t- a r(t)\big )r(t)^2. \end{aligned} \end{aligned}$$

In particular, at \(a=0\) we get

$$\begin{aligned} \frac{\partial }{\partial a}V_r(0,t)=-V'(r(t))r'(t)r(t) \end{aligned}$$

and

$$\begin{aligned} \frac{\partial ^2}{\partial a^2}V_r(0,t)=V''(r(t))r'(t)^2r(t)^2+ V'(r(t))r''(t)r(t)^2. \end{aligned}$$

We define

$$\begin{aligned} {\mathcal {S}}^k_{\mathrm {pot}}(r):=\frac{1}{k!}\int \limits _0^1 \frac{\partial ^k}{\partial a^k} V_r(0,t)\, \mathrm{d}t,\quad k\in {\mathbb {N}}_0. \end{aligned}$$

For \(k=0\) this is the unretarded action functional

$$\begin{aligned} {\mathcal {S}}^0_{\mathrm {pot}}(r)=\int \limits _0^1 V(r(t))\, \mathrm{d}t. \end{aligned}$$

To see that \({\mathcal {S}}^1_{\mathrm {pot}}\equiv 0\) vanishes identically choose a primitive F of the function in one variable \(r\mapsto V'(r) r\), that is \(F'(r)=V'(r) r\). Indeed, we get that

$$\begin{aligned} \begin{aligned} {\mathcal {S}}^1_{\mathrm {pot}}(r)&=-\int \limits _0^1 V'(r(t))r'(t)r(t)\, \mathrm{d}t\\&=-\int \limits _0^1 F'(r(t))r'(t)\, \mathrm{d}t\\&=-\int \limits _0^1 \frac{\mathrm{d}}{\mathrm{d}t}F(r(t))\, \mathrm{d}t\\&=0. \end{aligned} \end{aligned}$$

The last equation follows, because \(r(t)=\mathopen |q(t)\mathclose |\) is periodic. Using integration by parts for the second term in the sum we get that

$$\begin{aligned} {\mathcal {S}}^2_{\mathrm {pot}}(r)= & {} \frac{1}{2}\int \limits _0^1 \Big (V''(r(t))r'(t)^2r(t)^2+ \underbrace{r''(t)}_{u'}\underbrace{V'(r(t))r(t)^2}_{v}\Big )\mathrm{d}t\\= & {} \frac{1}{2}\int \limits _0^1 V''(r(t))r'(t)^2r(t)^2\,\mathrm{d}t\\&-\frac{1}{2}\int \limits _0^1 \underbrace{r'(t)}_{u}\underbrace{ \left( V''(r(t))r'(t)r(t)^2+2V'(r(t))r'(t) r(t)\right) }_{v'}\mathrm{d}t\\= & {} -\int \limits _0^1 V'(r(t))r'(t)^2 r(t) \, \mathrm{d}t. \end{aligned}$$

For the Coulomb potential

$$\begin{aligned} V(r)=-\frac{1}{r},\quad V'(r)=\frac{1}{r^2}, \end{aligned}$$

this simplifies to

$$\begin{aligned} {\mathcal {S}}^2_{\mathrm {pot}}(r)=-\int \limits _0^1 \frac{r'(t)^2}{r(t)}\,\mathrm{d}t. \end{aligned}$$

Hence Taylor approximation of \({\mathcal {S}}_{\mathrm {pot}}\) to second order in \(a=\frac{1}{c_{\mathrm{W}}}\) leads to

$$\begin{aligned} \begin{aligned} {\mathcal {S}}^0_{\mathrm {pot}}(r)+\frac{1}{c _\mathrm{W}}{\mathcal {S}}^1_{\mathrm {pot}}(r)+\frac{1}{c_\mathrm{W}^2}{\mathcal {S}}^2_{\mathrm {pot}}(r)&=-\int \limits _0^1 \frac{1}{r(t)}\bigg (1+\frac{r'(t)^2}{c _\mathrm{W}^2}\bigg ) \mathrm{d}t\\&=\int \limits _0^1 S(r(t))\,\mathrm{d}t \end{aligned} \end{aligned}$$

where

$$\begin{aligned} S(r)=-\frac{1}{r}\bigg (1+\frac{r'^2}{2c^2}\bigg ) \end{aligned}$$

is Neumann’s potential function, see (2.1), and \(2c^2=c _{\mathrm{W}}^2\).

Proton-proton system—Lorentzian metric

For a positive charge influenced by the proton, the Weber force exhibits fascinating properties as well. For simplicity, suppose both charges are protons and set their mass equal to one. In this case, the Lagrangian function is given by

$$\begin{aligned} L_\mathrm{W}(r,\phi ,v_r,v_\phi ) =\frac{1}{2}( v_r^2+r^2 v_\phi ^2) {-}\frac{1}{r}\bigg (1+\frac{ v_r^2}{2c^2}\bigg ). \end{aligned}$$

Changing brackets

$$\begin{aligned} \begin{aligned} L_\mathrm{W}(r,\phi ,v_r,v_\phi )&=\frac{1}{2}\bigg (1 {-}\frac{1}{c^2r}\bigg ) v_r^2 +\frac{1}{2} r^2 v_\phi ^2 {-}\frac{1}{r}\\&=\frac{1}{2}\left( g_{rr}\, v_r^2 +g_{\phi \phi }\, v_\phi ^2\right) -\frac{1}{r}. \end{aligned} \end{aligned}$$

Now the metric gets singular at Weber’s critical radius

$$\begin{aligned} \rho :=\frac{1}{c^2}=\alpha ^2. \end{aligned}$$

Outside Weber’s critical radius, the metric is Riemannian, while inside it is Lorentzian. An interesting aspect of Weber’s critical radius is that while outside Weber’s critical radius the force is repulsing—inside it is attracting! This led Weber to predict—40 years before Rutherford’s experiments—an atom consisting of a nucleus built of particles of the same charge together with particles of the opposite charge moving around the nucleus like planets. For more informations about Weber’s planetary model of the atom see [44, 45].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frauenfelder, U., Weber, J. The fine structure of Weber’s hydrogen atom: Bohr–Sommerfeld approach. Z. Angew. Math. Phys. 70, 105 (2019). https://doi.org/10.1007/s00033-019-1149-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1149-4

Mathematics Subject Classification

Keywords

Navigation