Skip to main content
Log in

Incompressible inviscid limit of the viscous two-fluid model with general initial data

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the incompressible inviscid limit of the viscous two-fluid model in the whole space \({\mathbb {R}}^3\) with general initial data in the framework of weak solutions. By applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of the densities and the velocity, we prove rigorously that the weak solutions of the compressible two-fluid model converge to the strong solution of the incompressible Euler equations in the time interval provided that the latter exists. Moreover, thanks to the Strichartz’s estimates of linear wave equations, we also obtain the convergence rates. The main ingredient of this paper is that our wave equations include the oscillations caused by the two different densities and the velocity and we also give an detailed analysis on the effect of the oscillations on the evolution of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard, T.: Low Mach number limit of the full Navier–Stokes equations. Arch. Ration. Mech. Anal. 180, 1–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, J.W., Lu, Y., Süli, E.: Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model. Commun. Math. Sci. 15(5), 1265–1323 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carrillo, J.A., Goudon, T.: Stability and asymptotic analysis of a fluid–particle interaction model. Comm. Partial Differ. Eqs. 31, 1349–1379 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caggio, M., Nečasová, S.: Inviscid incompressible limits for rotating fluids. Nonlinear Anal. 163, 1–18 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Desjardins, B., Grenier, E., Lions, P.-L., Masmoudi, N.: Incompressible limit for solutions of the isentropic Navier–Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Desjardins, B., Grenier, E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455, 2271–2279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evje, S.: Weak solution for a gas-liquid model relevant for describing gas–kick oil wells. SIAM J. Math. Anal. 43, 1887–1922 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Evje, S., Karlsen, K.H.: Global existence of weak solutions for a viscous two-fluid model. J. Differ. Equ. 245(9), 2660–2703 (2008)

    Article  MATH  Google Scholar 

  9. Evje, S., Karlsen, K.H.: Global weak solutions for a viscous liquid-gas model with singular pressure law. Commun. Pure Appl. Anal. 8, 1867–1894 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evje, S., Wen, H., Zhu, C.: On global solutions to the viscous liquid-gas model with unconstrained transition to single-phase flow. Math. Models Methods Appl. Sci. 27(2), 323–346 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feireisl, E., Jin, B., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14(4), 717–730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feireisl, E., Novotný, A.: Inviscid incompressible limits of the full Navier–Stokes–Fourier system. Commun. Math. Phys. 321(3), 605–628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feireisl, E., Novotný, A.: The low Mach number limit for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 186(1), 77–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  15. Hsiao, H., Ju, Q., Li, F.: The incompressible limits of compressible Navier–Stokes equations in the whole space with general initial data. Chin. Ann. Math. Ser. B 30(1), 17–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, X.P., Wang, D.H.: Low Mach number limit of viscous compressible magnetohydrodynamic flows. SIAM J. Math. Anal. 41, 1272–1294 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-phase Flow. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  18. Jiang, S., Ju, Q.C., Li, F.C.: Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun. Math. Phys. 297, 371–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, S., Ju, Q.C., Li, F.C.: Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients. SIAM J. Math. Anal. 42, 2539–2553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, S., Ju, Q.C., Li, F.C., Xin, Z.-P.: Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data. Adv. Math. 259, 384–420 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ju, Q.C., Li, F.C., Li, Y.: Asymptotic limits of the full compressible magnetohydrodynamic equations. SIAM J. Math. Anal. 45(5), 2597–2624 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kato, T.: Nonstationary flow of viscous and ideal fluids in \(R^3\). J. Funct. Anal. 9, 296–305 (1972)

    MATH  Google Scholar 

  23. Klainerman, S., Majda, A.: Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  MATH  Google Scholar 

  24. Kwon, Y.-S., Li, F.-C.: Incompressible limit of the degenerate quantum compressible Navier–Stokes equations with general initial data. J. Differ. Equ. 264(5), 3253–3284 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mellet, A., Vasseur, A.: Asymptotic analysis for a Vlasov–Fokker–Planck/compressible Navier–Stokes system of equations. Commun. Math. Phys. 281(3), 573–596 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Masmoudi, N.: Incompressible, inviscid limit of the compressible Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2), 199–224 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Novotný, A., Pokorný, M.: Weak solutions for some compressible multicomponent fluid models, arXiv:1802.00798v2

  29. Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  30. Schochet, S.: Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114, 476–512 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Su, J.: Incompressible limit of a compressible micropolar fluid model with general initial data. Nonlinear Anal. 132, 1–24 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Swann, H.S.G.: The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in \(R^3\). Trans. Am. Math. Soc. 157, 373–397 (1971)

    MATH  Google Scholar 

  33. Vasseur, A., Wen, H., Yu, C.: Global weak solution to the viscous two-fluid model with finite energy. J. Math. Pures Appl. 125, 247–282 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, J., Ju, Q., Yang, Y.: Asymptotic limits of Navier–Stokes equations with quantum effects. Z. Angew. Math. Phys. 66, 2271–2283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yao, L., Zhang, T., Zhu, C.: Existence of asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model. SIAM J. Math. Anal. 42(4), 1874–1897 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yao, L., Zhu, Z., Zi, R.: Incompressible limit of viscous liquid-gas two-phase flow model. SIAM J. Math. Anal. 44(5), 3324–3345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of the first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03030249) and the second author was supported in part by NSFC (Grant No. 11671193) and A project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, YS., Li, F. Incompressible inviscid limit of the viscous two-fluid model with general initial data. Z. Angew. Math. Phys. 70, 94 (2019). https://doi.org/10.1007/s00033-019-1142-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1142-y

Mathematics Subject Classification

Keywords

Navigation