Skip to main content
Log in

On the sensitivity of the transmission of boundary dissipation for strongly coupled and indirectly damped systems of wave equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the stability of a system of two strongly coupled wave equations by means of only one boundary feedback. We show that the stability of the system depends in a very complex way on all of the involved factors such as the type of coupling, the hidden regularity and the accordance of boundary conditions. We first show that the system is uniformly exponentially stable if the undamped equation has Dirichlet boundary condition, while it is only polynomially stable if the undamped equation is subject to Neumann boundary condition. Next, by a spectral approach, we show that this sensitivity of stability with respect to the boundary conditions on the undamped equation is intrinsically linked with the transmission of the vibration as well as the dissipation between the equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Z., Rao, B.: Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56, 630–644 (2005)

    Article  MathSciNet  Google Scholar 

  2. Russell, D.L.: A general framework for the study of indirect damping mechanisms in elastic systems. J. Math. Anal. Appl. 173, 339–358 (1993)

    Article  MathSciNet  Google Scholar 

  3. Anantharaman, A., Léautaud, M.: Sharp polynomial decay rates for the damped wave equation on the torus. Anal. PDE 7, 159–214 (2014)

    Article  MathSciNet  Google Scholar 

  4. Lebau, G.: Equation des ondes amorties. Math. Phys. Stud. 19, 73–109 (1996)

    Google Scholar 

  5. Liu, Z., Zhang, Q.: A note on the polynomial stability of a weakly damped elastic abstract system. Z. Angew. Math. Phys. 66, 1799–1804 (2015)

    Article  MathSciNet  Google Scholar 

  6. Ren, L., Xin, J.: Almost global existence for the Neumann problem of quasilinear wave equations outside star-shaped domains in 3D. Electron. J. Differ. Equ. 312, 1–22 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Li, F.: Limit behavior of the solution to nonlinear viscoelastic Marguerre–von Karman shallow shell system. J. Differ. Equ. 249, 1241–1257 (2010)

    Article  Google Scholar 

  8. Li, F., Zhao, Z., Chen, Y.: Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation. Nonlinear Anal. Real World Appl. 12, 1759–1773 (2011)

    Article  MathSciNet  Google Scholar 

  9. Li, F., Zhao, C.: Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping. Nonlinear Anal. 74, 3468–3477 (2011)

    Article  MathSciNet  Google Scholar 

  10. Li, F., Du, G.: General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback. J. Appl. Anal. Comput. 8, 390–401 (2018)

    MathSciNet  Google Scholar 

  11. Li, F., Jia, Z.: Global existence and stability of a class of nonlinear evolution equations with hereditary memory and variable density. Bound. Value Probl. 2019, 37 (2019)

    Article  MathSciNet  Google Scholar 

  12. Bai, Y., Mu, X.: Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptible. J. Appl. Anal. Comput. 8, 402–412 (2018)

    MathSciNet  Google Scholar 

  13. Ammar-Khodja, F., Bader, A., Benabdallah, A.: Dynamic stabilization of systems via decoupling techniques. ESAIM COCV 4, 577–593 (1999)

    Article  MathSciNet  Google Scholar 

  14. Duyckaerts, T.: Optimal decay rates of the energy of a hyperbolic–parabolic system coupled by an interface. Asymptot. Anal. 51, 17–45 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Hao, J., Liu, Z.: Stability of an abstract system of coupled hyperbolic and parabolic equations. Z. Angew. Math. Phys. 64, 1145–1159 (2013)

    Article  MathSciNet  Google Scholar 

  16. Lebeau, G., Zuazua, E.: Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ration. Mech. Anal. 148, 179–231 (1999)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z., Rao, B.: Frequency domain approach for the polynomial stability of a system of partially damped wave equation. J. Math. Anal. Appl. 335, 860–881 (2007)

    Article  MathSciNet  Google Scholar 

  18. Liu, Z., Rao, B.: Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60, 54–69 (2009)

    Article  MathSciNet  Google Scholar 

  19. Muñoz Rivera, J.E., Racke, R.: Large solutions and smoothing properties for nonlinear thermoelastic systems. J. Differ. Equ. 127, 454–483 (1996)

    Article  MathSciNet  Google Scholar 

  20. Rauch, J., Zhang, X., Zuazua, E.: Polynomial decay for a hyperbolic–parabolic coupled system. J. Math. Pures Appl. 84, 407–470 (2005)

    Article  MathSciNet  Google Scholar 

  21. Zhang, X., Zuazua, E.: Polynomial decay and control of a 1-d hyperbolic–parabolic coupled system. J. Differ. Equ. 204, 380–438 (2004)

    Article  MathSciNet  Google Scholar 

  22. Denk, R., Racke, R.: $L^p$-resolvent estimates and time decay for generalized thermoelastic plate equations. Electron. J. Differ. Equ. 48, 1–16 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Hao, J., Liu, Z., Yong, J.: Regularity analysis for an abstract system of coupled hyperbolic and parabolic equations. J. Differ. Equ. 259, 4763–4798 (2015)

    Article  MathSciNet  Google Scholar 

  24. Alabau-Boussouira, F., Léautaud, M.: Indirect stabilization of locally coupled wave-type systems. ESAIM Control Optim. Calc. Var. 18, 548–582 (2012)

    Article  MathSciNet  Google Scholar 

  25. Bátkai, A., Engel, K., Prüss, J., Schnaubelt, R.: Polynomial stability of operator semigroups. Math. Nachr. 279, 1425–1440 (2006)

    Article  MathSciNet  Google Scholar 

  26. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347, 455–478 (2010)

    Article  MathSciNet  Google Scholar 

  27. Loreti, P., Rao, B.: Optimal energy decay rate for partially damped systems by spectral compensation. SIAM J. Control Optim. 45, 1612–1632 (2006)

    Article  MathSciNet  Google Scholar 

  28. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, Berlin (1983)

    Book  Google Scholar 

  29. Benchimol, C.D.: A note on weak stabilization of contraction semi-groups. SIAM J. Control optim. 16, 373–379 (1978)

    Article  MathSciNet  Google Scholar 

  30. Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 306(2), 837–852 (1988)

    Article  MathSciNet  Google Scholar 

  31. Batty, C.J.K., Duyckaerts, T.: Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8, 765–780 (2008)

    Article  MathSciNet  Google Scholar 

  32. Li, T.-T., Rao, B.: Criteria of Kalman’s type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls. SIAM J. Control Optim. 54, 49–72 (2016)

    Article  MathSciNet  Google Scholar 

  33. Huang, F.: Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1, 43–56 (1985)

    MathSciNet  MATH  Google Scholar 

  34. Prüss, J.: On the spectrum of $C_0$ semi groups. Trans. Am. Math. Soc. 284, 847–857 (1984)

    Article  Google Scholar 

  35. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman and Hall, Boca Raton (1999)

    MATH  Google Scholar 

  36. Benaddi, A., Rao, B.: Energy decay rate of wave equations with indefinite damping. J. Differ. Equ. 161, 337–357 (2000)

    Article  MathSciNet  Google Scholar 

  37. Cox, S., Zuazua, E.: The rate at which energy decays in a damped string. Commun. Partial Differ. Equ. 19, 213–243 (1994)

    Article  MathSciNet  Google Scholar 

  38. Guo, B.: Riesz basis approach to the stabilization of a flexible beam with a tip mass. SIAM J. Control Optim. 39, 1736–1747 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referees for their very valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bopeng Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, B. On the sensitivity of the transmission of boundary dissipation for strongly coupled and indirectly damped systems of wave equations. Z. Angew. Math. Phys. 70, 75 (2019). https://doi.org/10.1007/s00033-019-1110-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1110-6

Keywords

Mathematics Subject Classification

Navigation