A model for bone mechanics and remodeling including cell populations dynamics

Abstract

In this paper, we propose a model for the description of bone mechanics and bone remodeling processes, including bone cell populations dynamics. The latter, described by a system of ODEs, influences the values for the elastic parameters used in the mechanical model, which in turn determines the “stimulus” function affecting the behavior of the cells. Numerical simulations concerning the behavior of the bone under external loads, as well as simple fracture healing processes are presented. The model can reproduce the qualitative behavior of bone tissue remodeling and mechanical response.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Abali, B.E., Müller, W.H., Dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87, 1–16 (2017)

    Article  Google Scholar 

  2. 2.

    Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Altenbach, H., Eremeyev, V.: Analysis of the viscoelastic behavior of plates made of functionally graded materials. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 88(5), 332–341 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Altenbach, H., Eremeyev, V.: On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Math. Mech. Complex Syst. 3(3), 273–283 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Ambrosi, D., Ateshian, G.A., Arruda, E.M., Cowin, S.C., Dumais, J., Goriely, A., Holzapfel, G.A., Humphrey, J.D., Kemkemer, R., Kuhl, E.: Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59(4), 863–883 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Andreaus, U., Giorgio, I., Lekszycki, T.: A 2D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. Zeitschrift für Angewandte Mathematik und Mechanik 13, 7 (2013)

    MATH  Google Scholar 

  8. 8.

    Andreaus, U., Giorgio, I., Madeo, A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Zeitschrift für angewandte Mathematik und Physik 66(1), 209–237 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20(4), 375–417 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 239–258. Springer, Berlin (2017)

    Google Scholar 

  11. 11.

    Bednarczyk, E., Lekszycki, T.: A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset. Zeitschrift für angewandte Mathematik und Physik 67(4), 94 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Bertram, A., Glüge, R.: Gradient materials with internal constraints. Math. Mech. Complex Syst. 4(1), 1–15 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Boutin, C., Giorgio, I., Placidi, L., et al.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Chatzigeorgiou, G., Javili, A., Steinmann, P.: Unified magnetomechanical homogenization framework with application to magnetorheological elastomers. Math. Mech. Solids 19(2), 193–211 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Clinton, T., Lanyon, L.E.: Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66, 397–402 (1984)

    Article  Google Scholar 

  16. 16.

    Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Dallas, S.L., Bonewald, L.F.: Dynamics of the transition from osteoblast to osteocyte. Ann. N. Y. Acad. Sci. 1192(1), 437–443 (2010)

    Article  Google Scholar 

  18. 18.

    D’Annibale, F., Rosi, G., Luongo, A.: Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica 50(3), 825–839 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Della Corte, A.: Modeling synthesis and resorption phenomena in bones by means of mixture models enhanced with computational population dynamics. Part 2: models of bone cells population dynamics. In: France–Italy Workshop Bone Biomechanics: Multiscale and Multiphysical Aspects, Giuliano di Roma, Italy, 26–28 September (2017)

  20. 20.

    Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of gabrio piola. Math. Mech. Solids 20(8), 887–928 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Dell’Isola, F, Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. In: Proceedings of the Royal Society, vol. 472, p. 20150790. The Royal Society, London (2016)

  23. 23.

    Dell’Isola F, Seppecher P, et al (2018) Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. https://doi.org/10.1007/s00161-018-0689-8

  24. 24.

    Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Franciosi, P., Spagnuolo, M., Salman, O.U.: Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates. Contin. Mech. Thermodyn. 1–32 (2018) https://doi.org/10.1007/s00161-018-0668-0

  26. 26.

    George, D., Allena, R., Remond, Y.: Cell nutriments and motility for mechanobiological bone remodeling in the context of orthodontic periodontal ligament deformation. J. Cell. Immunother. 4(1), 26–29 (2018)

    Article  Google Scholar 

  27. 27.

    Giorgio, I., Andreaus, U., dell’Isola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech. Lett. 13, 141–147 (2017)

    Article  Google Scholar 

  28. 28.

    Giorgio, I., Andreaus, U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016)

    Article  Google Scholar 

  29. 29.

    Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87–108 (2012)

    Article  Google Scholar 

  30. 30.

    Goda, I., Assidi, M., Ganghoffer, J.F.: Cosserat 3D anisotropic models of trabecular bone from the homogenisation of the trabecular structure. Comput. Methods Biomech. Biomed. Eng. 15(sup1), 288–290 (2012)

    Article  Google Scholar 

  31. 31.

    Graham, J.M., Ayati, B.P., Holstein, S.A., Martin, J.A.: The role of osteocytes in targeted bone remodeling: a mathematical model. PLoS ONE 8(5), e63884 (2013)

    Article  Google Scholar 

  32. 32.

    Greco, L., Cuomo, M., Contrafatto, L.: A reconstructed local \(\bar{B}\) formulation for isogeometric \(k\)irchhoff-\(l\)ove shells. Comput. Methods Appl. Mech. Eng. 332, 462–487 (2018)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Greve, R., Placidi, L., Seddik, H.: A continuum-mechanical model for the flow of anisotropic polar ice. Contin. Mech. Thermodyn. 22, 221–237 (2010)

    MATH  Article  Google Scholar 

  34. 34.

    Komarova, S.V., Smith, R.J., Dixon, S.J., Sims, S.M., Wahl, L.M.: Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33(2), 206–215 (2003)

    Article  Google Scholar 

  35. 35.

    Lekszycki, T., dell’Isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Lu, Y., Lekszycki, T.: Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute. Math. Mech. Solids 22(10), 1997–2010 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Luongo, A., D’Annibale, F.: Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads. Int. J. Non-Linear Mech. 55, 128–139 (2013)

    Article  Google Scholar 

  38. 38.

    Luongo, A., D’Annibale, F., Ferretti, M.: Hard loss of stability of Ziegler’s column with nonlinear damping. Meccanica 51(11), 2647–2663 (2016)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Luongo, A., Piccardo, G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288(4–5), 1027–1047 (2013)

    Google Scholar 

  40. 40.

    Melnik, A.V., Goriely, A.: Dynamic fiber reorientation in a fiber-reinforced hyperelastic material. Math. Mech. Solids 18(6), 634–648 (2013)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Milton, G., Briane, M., Harutyunyan, D.: On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials. Math. Mech. Complex Syst. 5(1), 41–94 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids, (2015) https://doi.org/10.1177/1081286515576821

  44. 44.

    Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 326, pp. 565–584. The Royal Society, London (1972)

  46. 46.

    Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A 474(2210), 20170878 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Placidi, L., Greve, R., Seddik, H., Faria, S.: Continuum-mechanical, anisotropic flow model for polar ice masses, based on an anisotropic flow enhancement factor. Contin. Mech. Thermodyn. 22(3), 221–237 (2010)

    MATH  Article  Google Scholar 

  49. 49.

    Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3), 56 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Ren, Y., Feng, J.Q.: Osteocytes play a key role in the formation and maintenance of mineralized bone. FASEB J. 31(1–supplement), 7-1 (2017)

    Google Scholar 

  51. 51.

    Robling, A.: Osteocytes orchestrate mechanical signal transduction in bone via WNT. FASEB J. 31(1–supplement), 7-3 (2017)

    Google Scholar 

  52. 52.

    Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech.-A/Solids 69, 179–191 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Spingarn, C., Wagner, D., Remond, Y., George, D.: Theoretical numerical modeling of the oxygen diffusion effects within the periodontal ligament for orthodontic tooth displacement. J. Cell. Immunother. 4, 44 (2018)

    Article  Google Scholar 

  54. 54.

    Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)

    Article  Google Scholar 

  56. 56.

    Turco, E., Dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabio Di Cosmo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rapisarda, A.C., Della Corte, A., Drobnicki, R. et al. A model for bone mechanics and remodeling including cell populations dynamics. Z. Angew. Math. Phys. 70, 9 (2019). https://doi.org/10.1007/s00033-018-1055-1

Download citation

Keywords

  • Bone tissue
  • Bone remodeling
  • Cell populations dynamics
  • Numerical simulations of bone mechanics

Mathematics Subject Classification

  • 74F99
  • 74B99