Advertisement

Stability estimate for the Helmholtz equation with rapidly jumping coefficients

  • Stefan SauterEmail author
  • Céline Torres
Article

Abstract

The goal of this paper is to investigate the stability of the Helmholtz equation in the high-frequency regime with non-smooth and rapidly oscillating coefficients on bounded domains. Existence and uniqueness of the problem can be proved using the unique continuation principle in Fredholm’s alternative. However, this approach does not give directly a coefficient-explicit energy estimate. We present a new theoretical approach for the one-dimensional problem and find that for a new class of coefficients, including coefficients with an arbitrary number of discontinuities, the stability constant (i.e. the norm of the solution operator) is bounded by a term independent of the number of jumps. We emphasize that no periodicity of the coefficients is required. By selecting the wave speed function in a certain “resonant” way, we construct a class of oscillatory configurations, such that the stability constant grows exponentially in the frequency. This shows that our estimates are sharp.

Keywords

Helmholtz equation High frequency Heterogeneous media Stability estimates 

Mathematics Subject Classification

Primary: 65N80 65N12 35B35 Secondary: 35J05 

References

  1. 1.
    Alessandrini, G.: Strong unique continuation for general elliptic equations in 2d. J. Math. Anal. Appl. 386(2), 669–676 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)CrossRefGoogle Scholar
  3. 3.
    Aziz, A.K., Kellogg, R.B., Stephens, A.B.: A two point boundary value problem with a rapidly oscillating solution. Numer. Math. 53(1–2), 107–121 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baskin, D., Spence, E.A., Wunsch, J.: Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations. SIAM J. Math. Anal. 48(1), 229–267 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bellassoued, M.: Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization. Asymptot. Anal. 35(3–4), 257–279 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bouchitté, G., Felbacq, D.: Homogenization near resonances and artificial magnetism from dielectrics. Comptes Rendus Mathematique 339(5), 377–382 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Burq, N.: Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math. 180(1), 1–29 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chaumont-Frelet, T.: Finite element approximation of Helmholtz problems with application to seismic wave propagation. Ph.D. thesis, INSA de Rouen (2015)Google Scholar
  9. 9.
    Cummings, P., Feng, X.: Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16(1), 139–160 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Esterhazy, S., Melenk, J.M.: On Stability of Discretizations of the Helmholtz Equation, pp. 285–324. Springer, Berlin (2012)zbMATHGoogle Scholar
  11. 11.
    Frisch, U., Froeschle, C., Scheidecker, J.-P., Sulem, P.-L.: Stochastic resonance in one-dimensional random media. Phys. Rev. A 8(3), 1416 (1973)CrossRefGoogle Scholar
  12. 12.
    Graham, I.G., Sauter, S.A.: Stability and error analysis for the Helmholtz equation with variable coefficients. ArXiv e-prints (2018)Google Scholar
  13. 13.
    Ihlenburg, F.: Finite Element Analysis of Acoustic Scattering. Springer, New York (1998)CrossRefGoogle Scholar
  14. 14.
    Jerison, D., Kenig, C.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121(3), 463–488 (1985)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lagendijk, A., van Tiggelen, B.A.: Resonant multiple scattering of light. Phys. Rep. 270(3), 143–215 (1996)CrossRefGoogle Scholar
  16. 16.
    Lahini, Y., Avidan, A., Pozzi, F., Sorel, M., Morandotti, R., Christodoulides, D.N., Silberberg, Y.: Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100(1), 013906 (2008)CrossRefGoogle Scholar
  17. 17.
    Lowe, M.J.: Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(4), 525–542 (1995)CrossRefGoogle Scholar
  18. 18.
    Makridakis, C., Ihlenburg, F., Babuška, I.: Analysis and finite element methods for a fluid-solid interaction problem in one dimension. Math. Models Methods Appl. Sci. 6(8), 1119–1141 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Makris, K.G., Brandstötter, A., Ambichl, P., Musslimani, Z.H., Rotter, S.: Wave propagation through disordered media without backscattering and intensity variations. Light Sci. Appl. 6(9), e17035 (2017)CrossRefGoogle Scholar
  20. 20.
    Melenk, J.M.: On Generalized Finite Element Methods. Ph.D. thesis, University of Maryland (1995)Google Scholar
  21. 21.
    Melenk, J.M., Sauter, S.: Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comput. 79(272), 1871–1914 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49(3), 1210–1243 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Moiola, A., Spence, E.A.: Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions. ArXiv e-prints (2017)Google Scholar
  24. 24.
    Morawetz, C.S., Ludwig, D.: An inequality for the reduced wave operator and the justification of geometrical optics. Commun. Pure Appl. Math. 21, 187–203 (1968)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ohlberger, M., Verfürth, B.: A new heterogeneous multiscale method for the Helmholtz equation with high contrast. Multiscale Model. Simul. 16(1), 385–411 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Perthame, B., Vega, L.: Morrey–Campanato estimates for Helmholtz equations. J. Funct. Anal. 164(2), 340–355 (1999)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Popoff, S.M., Lerosey, G., Carminati, R., Fink, M., Boccara, A.C., Gigan, S.: Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010)CrossRefGoogle Scholar
  28. 28.
    Popov, G., Vodev, G.: Resonances near the real axis for transparent obstacles. Commun. Math. Phys. 207(2), 411–438 (1999)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ralston, J.V.: Trapped rays in spherically symmetric media and poles of the scattering matrix. Commun. Pure Appl. Math. 24, 571–582 (1971)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Rellich, F.: Darstellung der Eigenwerte von \(\Delta u+\lambda u=0\) durch ein Randintegral. Math. Z. 46, 635–636 (1940)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Sebbah, P.: Waves and Imaging Through Complex Media. Springer, Berlin (2001)CrossRefGoogle Scholar
  32. 32.
    Spence, E.A.: Wavenumber-explicit bounds in time-harmonic acoustic scattering. SIAM J. Math. Anal. 46(4), 2987–3024 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZurichSwitzerland

Personalised recommendations