Flow of heat conducting fluid in a time-dependent domain

Abstract

We consider a flow of heat conducting fluid inside a moving domain whose shape in time is prescribed. The flow in this case is governed by the Navier–Stokes–Fourier system consisting of equation of continuity, momentum balance, entropy balance and energy equality. The velocity is supposed to fulfill the full-slip boundary condition and we assume that the fluid is thermally isolated. In the presented article we show the existence of a variational solution.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Angot, P., Bruneau, Ch-H, Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81(4), 497–520 (1999)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Antman, S.S., Wilber, J.P.: The asymptotic problem for the springlike motion of a heavy piston in a viscous gas. Q. Appl. Math. 65(3), 471–498 (2007)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Březina, J., Kreml, O., Mácha, V.: Dimension reduction for the full Navier–Stokes–Fourier system. J. Math. Fluid Mech. 19, 659–683 (2017)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bulíček, M., Málek, J., Rajagopal, K.R.: Navier’s slip and evolutionary Navier–Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana Univ. Math. J. 56, 51–86 (2007)

    MathSciNet  Article  Google Scholar 

  5. 5.

    DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    Google Scholar 

  7. 7.

    Feireisl, E.: On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53, 1707–1740 (2004)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak–strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14(4), 717–730 (2012)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Feireisl, E., Neustupa, J., Stebel, J.: Convergence of a Brinkman-type penalization for compressible fluid flows. J. Differ. Equ. 250(1), 596–606 (2011)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Feireisl, E., Kreml, O., Nečasová, Š., Neustupa, J., Stebel, J.: Weak solutions to the barotropic Navier–Stokes system with slip boundary conditions in time dependent domains. J. Differ. Equ. 254(1), 125–140 (2013)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser-Verlag, Basel (2009)

    Google Scholar 

  12. 12.

    Feireisl, E., Novotný, A.: Weak–strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech. 3, 358–392 (2001)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Feireisl, E., Petzeltová, H.: On integrability up to the boundary of the weak solutions of the Navier–Stokes equations of compressible flow. Commun. Partial Differ. Equ. 25(3–4), 755–767 (2000)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Feireisl, E., Mácha, V., Nečasová, Š., Tucsnak, M.: Analysis of the adiabatic piston problem via methods of continuum mechanics. Ann. Inst. Henri Poincaré C Anal. Nonlinéaire 35(5), 1377–1408 (2018)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Fujita, H., Sauer, N.: On existence of weak solutions of the Navier–Stokes equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. I 17, 403–420 (1970)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Gruber, C., Morriss, G.P.: A Boltzmann equation approach to the dynamics of the simple piston. J. Stat. Phys. 113(1–2), 297–333 (2003)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Gruber, C., Pache, S., Lesne, A.: Two-time-scale relaxation towards thermal equilibrium of the enigmatic piston. J. Stat. Phys. 112(5–6), 1177–1206 (2003)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Gruber, C., Pache, S., Lesne, A.: On the second law of thermodynamics and the piston problem. J. Stat. Phys. 117(3–4), 739–772 (2004)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Kreml, O., Mácha, V., Nečasová, Š., Wróblewska-Kamińska, A.: Weak solutions to the full Navier–Stokes–Fourier system with slip boundary conditions in time dependent domains. J. Math. Pures Appl. 109, 67–92 (2018)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Ladyzhenskaja, O.A.: An initial-boundary value problem for the Navier–Stokes equations in domains with boundary changing in time. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 11, 97–128 (1968)

    MathSciNet  Google Scholar 

  22. 22.

    Lieb, E.H.: Some problems in statistical mechanics that I would like to see solved. Physica A 263(1–4), 491–499 (1999). (STATPHYS 20 (Paris, 1998))

    MathSciNet  Article  Google Scholar 

  23. 23.

    Lions, P.-L.: Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  24. 24.

    Liu, Q., Vasilyev, O.V.: A Brinkman penalization method for compressible flows in complex geometries. J. Comput. Phys. 227(2), 946–966 (2007)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Maity, D., Takahashi, T., Tucsnak, M.: Analysis of a system modelling the motion of a piston in a viscous gas. J. Math. Fluid Mech. 19(3), 551–579 (2017)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Neustupa, J.: Existence of a weak solution to the Navier–Stokes equation in a general time-varying domain by the Rothe method. Math. Methods Appl. Sci. 32(6), 653–683 (2009)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Neustupa, J., Penel, P.: A weak solvability of the Navier–Stokes equation with Navier’s boundary condition around a ball striking the wall. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics, pp. 385–407. Springer, Berlin (2010)

    Google Scholar 

  28. 28.

    Neustupa, J., Penel, P.: A weak solution to the Navier–Stokes system with Navier’s boundary condition in a time-varying domain. Recent developments of mathematical fluid mechanics. In: Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (eds.) Advances in Mathmetical Fluid Mechanics, pp. 375–400. Basel, Birkhäuser (2016)

    Google Scholar 

  29. 29.

    Poul, L.: On dynamics of fluids in astrophysics. J. Evol. Equ. 9, 37–66 (2009)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Priezjev, N.V., Troian, S.M.: Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)

    Article  Google Scholar 

  31. 31.

    Saal, J.: Maximal regularity for the Stokes system on noncylindrical space-time domains. J. Math. Soc. Jpn. 58(3), 617–641 (2006)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Shelukhin, V.V.: The unique solvability of the problem of motion of a piston in a viscous gas. Dinamika Sploshn. Sredy 31, 132–150 (1977)

    MathSciNet  Google Scholar 

  33. 33.

    Shelukhin, V.V.: Motion with a contact discontinuity in a viscous heat conducting gas. Dinamika Sploshn. Sredy 57, 131–152 (1982)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Stokes, Y., Carrey, G.: On generalised penalty approaches for slip, free surface and related boundary conditions in viscous flow simulation. Int. J. Numer. Methods Heat Fluid Flow 21, 668–702 (2011)

    Article  Google Scholar 

  35. 35.

    Wright, P.: A simple piston problem in one dimension. Nonlinearity 19(10), 2365–2389 (2006)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Wright, P.: The periodic oscillation of an adiabatic piston in two or three dimensions. Commun. Math. Phys. 275(2), 553–580 (2007)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Wright, P.: Rigorous results for the periodic oscillation of an adiabatic piston. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), New York University (2007)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Šárka Nečasová.

Additional information

The work of O.K. and Š.N. was supported by 7AMB16PL060 and by RVO 67985840. Stay of V. M. in Imperial College London was supported by GA17-01747S and RVO: 67985840. Stay of O.K. at Imperial College London was supported by the grant Iuventus Plus 0871/IP3/2016/74.

The work of A.W.-K. is partially supported by a Newton Fellowship of the Royal Society and by the grant Iuventus Plus 0871/IP3/2016/74 of Ministry of Sciences and Higher Education RP. Her stay at Institute of Mathematics of Academy of Sciences, Prague, was supported by 7AMB16PL060.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kreml, O., Mácha, V., Nečasová, Š. et al. Flow of heat conducting fluid in a time-dependent domain. Z. Angew. Math. Phys. 69, 119 (2018). https://doi.org/10.1007/s00033-018-1012-z

Download citation

Keywords

  • Compressible Navier–Stokes–Fourier equations
  • Entropy inequality
  • Time-varying domain
  • Slip boundary conditions

Mathematics Subject Classification

  • 35Q35
  • 76N10