Skip to main content
Log in

Remarks on the stability properties of the Kuramoto–Sakaguchi–Fokker–Planck equation with frustration

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We present stability properties of the Kuramoto–Sakaguchi–Fokker–Planck (in short, KS–FP) equation with frustration arising from the synchronization modeling of a large ensemble of weakly coupled oscillators under the effect of uniform frustration (phase-lag). Even in the absence of Fokker–Planck term (i.e., the diffusion term), the existence of frustration destroys a gradient flow structure of the original kinetic Kuramoto equation. Thus, useful machineries from the gradient flow theory cannot be used in the large-time behavior of the equation as it is. In this paper, we address two stability estimates for the KS–FP equation. First, we present a sufficient framework leading to the asymptotic stability of the incoherent state. Our stability framework has been formulated in terms of the probability density function of natural frequencies, coupling strength, diffusion coefficient, size of frustration and initial data. Second, we show that the KS–FP equation is structurally stable with respect to the size of frustration. More precisely, we show that the solution to the KS–FP equation tends to the corresponding solution to the KS–FP with zero frustration, as the size of frustration tends to zero under a suitable framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  Google Scholar 

  2. Acebrón, J.A., Lavrentiev Jr., M.M., Spigler, R.: Spectral analysis and computation for the Kuramoto–Sakaguchi integroparabolic equation. IMA J. Numer. Anal. 21, 239–263 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benedetto, D., Caglioti, E., Montemagno, U.: On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. 13, 1775–1786 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonilla, L.L., Neu, J.C., Spigler, R.: Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators. J. Stat. Phys. 67, 313–330 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carrillo, J.A., Choi, Y.-P., Ha, S.-Y., Kang, M.-J., Kim, Y.: Contractivity of transport distances for the kinetic Kuramoto equation. J. Stat. Phys. 156, 395–415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolley, F., Canizo, J.A., Carrillo, J.A.: Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett. 25, 339–343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi, Y., Ha, S.-Y., Jung, S.-E., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D 241, 735–754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chiba, H.: A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model. Ergod. Theor. Dyn. Syst. 35, 762–834 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Autom. Control 54, 353–357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daido, H.: Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions. Phys. Rev. Lett. 68, 1073–1076 (1992)

    Article  Google Scholar 

  11. De Smet, F., Aeyels, D.: Partial entrainment in the finite Kuramoto–Sakaguchi model. Physica D 234, 81–89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, J.-G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11, 465–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fernandez, B., Gérard-Varet, D., Giacomin, G.: Landau damping in the Kuramoto model. Ann. Henri Poincaré 17, 1793–1823 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ha, S.-Y., Kim, J., Park, J., Zhang, X.: Uniform stability and mean-field limit for the augmented Kuramoto model. Netw. Heterog. Media (to appear)

  16. Ha, S.-Y., Kim, Y., Li, Z.: Asymptotic synchronous behavior of Kuramoto type models with frustrations. Netw. Heterog. Media 9, 33–64 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ha, S.-Y., Kim, Y., Li, Z.: Large-time dynamics of Kuramoto oscillators under the effects of inertia and frustration. SIAM J. Appl. Dyn. Syst. 13, 466–492 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ha, S.-Y., Kim, H., Park, J.: Remarks on the complete synchronization for the Kuramoto model with frustrations. Anal. Appl. (2017). https://doi.org/10.1142/S0219530517500130

    MATH  Google Scholar 

  19. Ha, S.-Y., Kim, H., Ryoo, S.: Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci. 14, 1073–1091 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ha, S.-Y., Ko, D., Zhang, Y.: Emergence of phase-locking in the Kuramoto model for identical oscillators with frustration. SIAM J. Appl. Dyn. Syst. 17, 581–625 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ha, S.-Y., Ko, D., Park, J., Zhang, X.: Collective synchronization of classical and quantum oscillators. EMS Surv. Math. Sci. 3, 209–267 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ha, S.-Y., Xiao, Q.: Nonlinear instability of the incoherent state for the Kuramoto–Sakaguchi–Fokker–Plank equation. J. Stat. Phys. 160, 477–496 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ha, S.-Y., Xiao, Q.: Remarks on the nonlinear stability of the Kuramoto–Sakaguchi equation. J. Differ. Equ. 259, 2430–2457 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jadbabaie, A., Motee, N., Barahona, M.: On the stability of the Kuramoto model of coupled nonlinear oscillators. Proc. Am. Control Conf. 5, 4296–4301 (2004)

    Google Scholar 

  25. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  26. Kuramoto, Y.: Self-entrainment of a population of coupled nonlinear oscillators. In: Araki, H. (ed.) International Symposium on Mathematical Problems in Mathematical Physics. Lecture Notes in Physics, vol. 39, pp. 420–422. Springer, New York (1975)

    Google Scholar 

  27. Lancellotti, C.: On the Vlasov limit for systems of nonlinearly coupled oscillators without noise. Transp. Theory Stat. Phys. 34, 523–535 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Levnajić, Z.: Emergent multistability and frustration in phase-repulsive networks of oscillators. Phys. Rev. E 84, 016231 (2011)

    Article  Google Scholar 

  29. Lavrentiev, M.M., Spigler, R.: Existence and uniqueness of solutions to the Kuramoto–Sakaguchi non-linear parabolic integrodifferential equation. Differ. Integr. Equ. 13, 649–667 (2000)

    MATH  Google Scholar 

  30. Oh, E., Choi, C., Kahng, B., Kim, D.: Modular synchronization in complex networks with a gauge Kuramoto model. EPL 83, 68003 (2008)

    Article  Google Scholar 

  31. Park, K., Rhee, S.W., Choi, M.Y.: Glass synchronization in the network of oscillators with random phase shift. Phys. Rev. E 57, 5030–5035 (1998)

    Article  Google Scholar 

  32. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  33. Rein, G., Weckler, J.: Generic global classical solutions of the Vlasov–Fokker–Planck–Poisson system in three dimensions. J. Differ. Equ. 99, 59–77 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sakaguchi, H.: Cooperative phenomena in coupled oscillator system sunder external fields. Prog. Theor. Phys. 79, 39–46 (1988)

    Article  Google Scholar 

  35. Sakaguchi, H., Kuramoto, Y.: A soluble active rotator model showing phase transitions via mutual entraintment. Prog. Theor. Phys. 76, 576–581 (1986)

    Article  Google Scholar 

  36. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Strogatz, S.H., Mirollo, R.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613–635 (1991)

    Article  MathSciNet  Google Scholar 

  38. van Hemmen, J.L., Wreszinski, W.F.: Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators. J. Stat. Phys. 72, 145–166 (1993)

    Article  MATH  Google Scholar 

  39. Watanabe, S., Strogatz, S.H.: Constants of motion for superconducting Josephson arrays. Physica D 74, 197–253 (1994)

    Article  MATH  Google Scholar 

  40. Watanabe, S., Strogatz, S.H.: Integrability of a globally coupled oscillator array. Phys. Rev. Lett. 70, 2391–2394 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Article  Google Scholar 

  42. Zheng, Z.G.: Frustration effect on synchronization and chaos in coupled oscillators. Chin. Phys. Soc. 10, 703–707 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The work of S.-Y. Ha is supported by the NRF Grant (2017R1A2B2001864).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doheon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SY., Kim, D., Lee, J. et al. Remarks on the stability properties of the Kuramoto–Sakaguchi–Fokker–Planck equation with frustration. Z. Angew. Math. Phys. 69, 94 (2018). https://doi.org/10.1007/s00033-018-0984-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0984-z

Keywords

Mathematics Subject Classification

Navigation