Skip to main content

Graphene ground states


Graphene is locally two-dimensional but not flat. Nanoscale ripples appear in suspended samples and rolling up often occurs when boundaries are not fixed. We address this variety of graphene geometries by classifying all ground-state deformations of the hexagonal lattice with respect to configurational energies including two- and three-body terms. As a consequence, we prove that all ground-state deformations are either periodic in one direction, as in the case of ripples, or rolled up, as in the case of nanotubes.

This is a preview of subscription content, access via your institution.


  1. Ferrari, A.C., et al.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4587–5062 (2015)

    Article  Google Scholar 

  2. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon, Oxford (1980)

    MATH  Google Scholar 

  3. Mermin, N.D.: Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968)

    Article  Google Scholar 

  4. Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)

    Article  Google Scholar 

  5. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    Article  Google Scholar 

  6. Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007)

    Article  Google Scholar 

  7. Herrero, C.P., Ramirez, R.: Quantum effects in graphene monolayers: path-integral simulations. J. Chem. Phys. 145, 224701 (2016)

    Article  Google Scholar 

  8. Deng, S., Berry, V.: Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19(4), 197–212 (2016)

    Article  Google Scholar 

  9. Lambin, P.: Elastic properties and stability of physisorbed graphene. Appl. Sci. 4, 282–304 (2014)

    Article  Google Scholar 

  10. Brenner, D.W.: Empirical potential for hydrocarbons for use in stimulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  Google Scholar 

  11. Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 8, 5262–5271 (1985)

    Article  Google Scholar 

  12. Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988)

    Article  Google Scholar 

  13. Li, W.E,D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286(3), 1099–1140 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  14. Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  15. Farmer, B., Esedoglu, S., Smereka, P.: Crystallization for a Brenner-like potential. Comm. Math. Phys. 349, 1029–1061 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  16. Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Commun. Math. Phys. 328(2), 545–571 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  17. Davoli, E., Piovano, P., Stefanelli, U.: Wulff shape emergence in graphene. Math. Models Methods Appl. Sci. 26, 2277–2310 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  18. Stefanelli, U.: Stable carbon configurations. Boll. Unione Mat. Ital. (9) 10, 335–354 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  19. Friedrich, M., Mainini, E., Piovano, P., Stefanelli, U.: Characterization of optimal carbon nanotubes under stretching and validation of the Cauchy–Born rule. Submitted (2017). Preprint at arXiv:1706.01494

  20. Mainini, E., Murakawa, H., Piovano, P., Stefanelli, U.: Carbon-nanotube geometries: analytical and numerical results. Discrete Contin. Dyn. Syst. Ser. S 10, 141–160 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  21. Mainini, E., Murakawa, H., Piovano, P., Stefanelli, U.: Carbon-nanotube geometries as optimal configurations. Multiscale Model. Simul. 15, 1448–1471 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  22. Friedrich, M., Piovano, P., Stefanelli, U.: The geometry of \(C_{60}\). SIAM J. Appl. Math. 76, 2009–2029 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  23. Lazzaroni, G., Stefanelli, U.: Chain-like Minimizers in Three Dimensions. Submitted (2017). Preprint available at

  24. Davini, C., Favata, A., Paroni, R.: The Gaussian stiffness of graphene deduced from a continuum model based on molecular dynamics potentials. J. Mech. Phys. Solids 104, 96–114 (2017)

    MathSciNet  Article  Google Scholar 

  25. Friedrich, M., Stefanelli, U.: Periodic Ripples in Graphene: A Variational Approach. Submitted (2018). Preprint at arXiv:1802.05053

  26. Clayden, J., Greeves, N., Warren, S.G.: Organic Chemistry. Oxford University Press, Oxford (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ulisse Stefanelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Friedrich, M., Stefanelli, U. Graphene ground states. Z. Angew. Math. Phys. 69, 70 (2018).

Download citation

  • Received:

  • Published:

  • DOI:

Mathematics Subject Classification

  • 70F45
  • 82D80


  • Graphene
  • Ground states
  • Nonflatness
  • Three-dimensional structures
  • Periodicity