Advertisement

Graphene ground states

  • Manuel Friedrich
  • Ulisse StefanelliEmail author
Article

Abstract

Graphene is locally two-dimensional but not flat. Nanoscale ripples appear in suspended samples and rolling up often occurs when boundaries are not fixed. We address this variety of graphene geometries by classifying all ground-state deformations of the hexagonal lattice with respect to configurational energies including two- and three-body terms. As a consequence, we prove that all ground-state deformations are either periodic in one direction, as in the case of ripples, or rolled up, as in the case of nanotubes.

Keywords

Graphene Ground states Nonflatness Three-dimensional structures Periodicity 

Mathematics Subject Classification

70F45 82D80 

References

  1. 1.
    Ferrari, A.C., et al.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4587–5062 (2015)CrossRefGoogle Scholar
  2. 2.
    Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon, Oxford (1980)zbMATHGoogle Scholar
  3. 3.
    Mermin, N.D.: Crystalline order in two dimensions. Phys. Rev. 176, 250–254 (1968)CrossRefGoogle Scholar
  4. 4.
    Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)CrossRefGoogle Scholar
  5. 5.
    Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)CrossRefGoogle Scholar
  6. 6.
    Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007)CrossRefGoogle Scholar
  7. 7.
    Herrero, C.P., Ramirez, R.: Quantum effects in graphene monolayers: path-integral simulations. J. Chem. Phys. 145, 224701 (2016)CrossRefGoogle Scholar
  8. 8.
    Deng, S., Berry, V.: Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19(4), 197–212 (2016)CrossRefGoogle Scholar
  9. 9.
    Lambin, P.: Elastic properties and stability of physisorbed graphene. Appl. Sci. 4, 282–304 (2014)CrossRefGoogle Scholar
  10. 10.
    Brenner, D.W.: Empirical potential for hydrocarbons for use in stimulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)CrossRefGoogle Scholar
  11. 11.
    Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 8, 5262–5271 (1985)CrossRefGoogle Scholar
  12. 12.
    Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988)CrossRefGoogle Scholar
  13. 13.
    Li, W.E,D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286(3), 1099–1140 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Farmer, B., Esedoglu, S., Smereka, P.: Crystallization for a Brenner-like potential. Comm. Math. Phys. 349, 1029–1061 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mainini, E., Stefanelli, U.: Crystallization in carbon nanostructures. Commun. Math. Phys. 328(2), 545–571 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Davoli, E., Piovano, P., Stefanelli, U.: Wulff shape emergence in graphene. Math. Models Methods Appl. Sci. 26, 2277–2310 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Stefanelli, U.: Stable carbon configurations. Boll. Unione Mat. Ital. (9) 10, 335–354 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Friedrich, M., Mainini, E., Piovano, P., Stefanelli, U.: Characterization of optimal carbon nanotubes under stretching and validation of the Cauchy–Born rule. Submitted (2017). Preprint at arXiv:1706.01494
  20. 20.
    Mainini, E., Murakawa, H., Piovano, P., Stefanelli, U.: Carbon-nanotube geometries: analytical and numerical results. Discrete Contin. Dyn. Syst. Ser. S 10, 141–160 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mainini, E., Murakawa, H., Piovano, P., Stefanelli, U.: Carbon-nanotube geometries as optimal configurations. Multiscale Model. Simul. 15, 1448–1471 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Friedrich, M., Piovano, P., Stefanelli, U.: The geometry of \(C_{60}\). SIAM J. Appl. Math. 76, 2009–2029 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lazzaroni, G., Stefanelli, U.: Chain-like Minimizers in Three Dimensions. Submitted (2017). Preprint available at http://cvgmt.sns.it/paper/3418/
  24. 24.
    Davini, C., Favata, A., Paroni, R.: The Gaussian stiffness of graphene deduced from a continuum model based on molecular dynamics potentials. J. Mech. Phys. Solids 104, 96–114 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Friedrich, M., Stefanelli, U.: Periodic Ripples in Graphene: A Variational Approach. Submitted (2018). Preprint at arXiv:1802.05053
  26. 26.
    Clayden, J., Greeves, N., Warren, S.G.: Organic Chemistry. Oxford University Press, Oxford (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.Istituto di Matematica Applicata e Tecnologie Informatiche E. MagenesPaviaItaly

Personalised recommendations