Skip to main content
Log in

Asymptotic behavior of solutions to an electromagnetic fluid model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In the present paper, we investigate the asymptotic behavior of solutions to an electromagnetic fluid system for viscous compressible flow without heat conduction in three spatial dimensions. The global existence and time-decay estimates of classical solution are established when the initial data are small perturbations of some given constant state. The proof is based on some elaborate energy estimates and the decay estimates for the linearized system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabannes, H.: Theoretical Magnetohydrodynamics. Academic Press, New York (1970)

    Google Scholar 

  2. Duan, R., Ma, H.: Global existence and convergence rates for the 3-D compressible Navier–Stokes equations without heat conductivity. Indiana Univ. Math. J. 57(5), 2299–2319 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fan, J., Li, F., Nakamura, G.: Uniform well-posedness and singular limits of the isentropic Navier-Stokes-Maxwell system in a bounded domain. Z. Angew. Math. Phys. (2015). https://doi.org/10.1007/s00033-014-0484-8

    MathSciNet  MATH  Google Scholar 

  4. Germain, P., Ibrahim, S., Masmoudi, N.: Well-posedness of the Navier–Stokes–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 144, 71–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hu, X., Wang, D.: Global solutions to the three-dimensional full compressible magnetohydrodynamic flows. Commun. Math. Phys. 283, 255–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, X., Wang, D.: Global existence and large-time behavior of solutions to the three dimensional equations of compressible magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 197, 203–238 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ibrahim, S., Keraani, S.: Global small solutions for the Navier–Stokes–Maxwell system. SIAM J. Math. Anal. 43(5), 2275–2295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ibrahim, S., Yoneda, T.: Local solvability and loss of smoothness of the Navier–Stokes–Maxwell equations with large initial data. J. Math. Anal. Appl. 396(2), 555–561 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Imai, I.: General principles of magneto-fluid dynamics. In: Magneto-Fulid Dynamics, Suppl. Prog. Theor. Phys., 24 , chap I, 1–34 (1962)

  10. Jiang, S., Ju, Q., Li, F.: Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun. Math. Phys. 297, 371–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, S., Li, F.: Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system. Nonlinearity 25, 1735–1752 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, S., Li, F.: Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations. Asymptot. Anal. 95, 161–185 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, S., Li, F.: Zero dielectric constant limit to the non-isentropic compressible Euler–Maxwell system. Sci. China Math. 58(1), 61–76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kawashima, S.: Smooth global solutions for two-dimensional equations of electromagneto-fluid dynamics. Jpn. J. Appl. Math. 1, 207–222 (1984)

    Article  MATH  Google Scholar 

  16. Kawashima, S.: System of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Manetohydrodynamics, Ph.D thesis, Kyoto University, Kyoto (1983)

  17. Kawashima, S., Shizuta, Y.: Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid. Tsukuba J. Math. 10(1), 131–149 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kawashima, S., Shizuta, Y.: Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid II. Proc. Jpn. Acad. Ser. A 62, 181–184 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, F., Mu, Y.: Low Mach number limit of the full compressible Navier–Stokes–Maxwell system. J. Math. Anal. Appl. 412, 334–344 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, F., Yu, H.: Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations. Proc. R. Soc. Edinb. 141A, 109–126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, T.-P., Zeng, Y.: Compressible Navier–Stokes equations with zero heat conductivity. J. Diff. Eqns. 153, 225–291 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984)

    Book  MATH  Google Scholar 

  23. Masmoudi, N.: Global well posedness for the Maxwell–Navier–Stokes system in 2D. J. Math. Pures Appl. 93, 559–571 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matsumura, A.: On the asymptotic behavior of solutions of semi-linear wave equations. Publ. Res. Inst. Math. Sci. Kyoto Univ. 12, 169–189 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Matsumura, A., Nishida, T.: The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A 55, 337–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nishihara, K.: \(L^p\)-\(L^q\) estimates of solutions to the damped wave equation in 3-dimensional space and their application. Math. Z. 244, 631–649 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic-parabolic type with application to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Umeda, T., Kawashima, S., Shizuta, Y.: On the decay of solutions to the linearized equations of electromagnetofluid dynamics. Jpn. J. Appl. Math. 1, 435–457 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vol’pert, A.I., Hudjaev, S.I.: On the Cauchy problem for composite systems of nonlinear differential equations. Math. USSR Sbornik 16, 517–544 (1972)

    Article  Google Scholar 

  31. Xu, X.: On the large time behavior of the electromagnetic fluid system in \({{\mathbb{R}}}^3\). Nonlinear Anal. Real World Appl. 33, 83–99 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, J., Zhao, J.: Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics. Commun. Math. Sci. 8, 835–850 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research is supported by Postdoctoral Science Foundation of China through Grant 2017M610818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X. Asymptotic behavior of solutions to an electromagnetic fluid model. Z. Angew. Math. Phys. 69, 50 (2018). https://doi.org/10.1007/s00033-018-0945-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0945-6

Keywords

Mathematics Subject Classification

Navigation