Study on the piezoelectric coated devices based on the 2D Green’s functions under a tangential line force

Article
  • 24 Downloads

Abstract

This paper presents a refined approach of the electro-elastic fields through the 2D Green’s functions under a tangential line load. The structure of piezoelectric devices is composed of a piezoelectric substrate and an elastic coating. When arbitrary distributed load is applied, the components can be obtained by superposition principle. This method has high stability, efficiency and computational precision, compared with finite element method. And the conclusions provide meaningful value for the design of layered structure in engineering.

Keywords

Coated Piezoelectric Sensors Energy harvesters Green’s function 

Mathematics Subject Classification

00A69 

References

  1. 1.
    Wang, X., Yang Xu, Y.: Interaction between a piezoelectric screw dislocation and a finite crack with surface piezoelectricity. Z. Angew. Math. Phys. 66, 3679–3697 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Li, X.F., Lee, K.Y.: Transient response of a semi-infinite piezoelectric layer with a surface permeable crack. Z. Angew. Math. Phys. 57, 636–651 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Li, X., Zhou, Y.T., Zhong, Z.: On the analytical solution for sliding contact of piezoelectric materials subjected to a flat or parabolic indenter. Z. Angew. Math. Phys. 66, 473–495 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Lioubimova, E., Schiavone, P.: Steady-state vibrations of an unbounded linear piezoelectric medium. Z. Angew. Math. Phys. 57, 862–874 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Loghmani, A., Danesh, M., Keshmiri, M.: Modal structural acoustic sensing with minimum number of optimally placed piezoelectric sensors. J. Sound. Vib. 16(363), 345–358 (2015)Google Scholar
  6. 6.
    Zhou, W., Khaliq, A., Tang, Y., Ji, H., Selmic, R.R.: Simulation and design of piezoelectric microcantilever chemical sensors. Sens. Actuator A 125, 69–75 (2005)CrossRefGoogle Scholar
  7. 7.
    Kalantarian, H., Alshurafa, N., Le, T., Sarrafzadeh, M.: Monitoring eating habits using a piezoelectric sensor-based necklace. Comput. Biol. Med. 58, 46–55 (2015)CrossRefGoogle Scholar
  8. 8.
    Wang, X.D., Huang, G.L.: The coupled dynamic behavior of piezoelectric sensors bonded to elastic media. J. Intel. Mat. Syst. Str. 17(10), 883–894 (2006)CrossRefGoogle Scholar
  9. 9.
    Song, G.L.: Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cem. Concr. Res. 30(11), 1723–1730 (2000)CrossRefGoogle Scholar
  10. 10.
    Song, G., Gu, H., Li, H.: Application of the piezoelectric materials for health monitoring in civil engineering. Earth Space USA 2004, 680–687 (2004)Google Scholar
  11. 11.
    Cookchennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)CrossRefGoogle Scholar
  12. 12.
    Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)CrossRefGoogle Scholar
  13. 13.
    Kim, H.U., Lee, W.H., Rasikadias, H.V., Priya, S.: Piezoelectric microgenerators-current status and challenges. IEEE Trans. Utrason. Ferroelectr. Freq. Control 56, 1555–1568 (2009)CrossRefGoogle Scholar
  14. 14.
    Ferrari, M., Ferrari, V., Guizzettia, M., Andò, B., Baglio, S., Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuator A: Phys. 162, 425–431 (2010)CrossRefGoogle Scholar
  15. 15.
    Cookchennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 1–33 (2008)Google Scholar
  16. 16.
    Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C.: Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96, 1454–1486 (2008)CrossRefGoogle Scholar
  17. 17.
    James, E.P., Tudor, M.J., Beeby, S.P., Harris, N.R., Glynne-Jones, P., Ross, J.N., White, N.M.: An investigation of self-powered systems for condition monitoring applications. Sens. Actuators A: Phys. 110, 171–176 (2004)CrossRefGoogle Scholar
  18. 18.
    Huang, H.H., Chen, K.S.: Design, analysis, and experimental studies of a novel PVDF-based piezoelectric energy harvester with beating mechanisms. Sens. Actuators A: Phys. 238, 317–328 (2016)CrossRefGoogle Scholar
  19. 19.
    Priya, S.: Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 87, 184101 (2005)CrossRefGoogle Scholar
  20. 20.
    Mateu, L., Moll, F.: Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J. Intell. Mater. Syst. Struct. 16, 835–845 (2005)CrossRefGoogle Scholar
  21. 21.
    Mateu, L., Moll, F., Moll, F.: Electrical characterization of a piezoelectric film-based power generator for autonomous wearable devices. In: XVIII Conference on Design of Circuits and Integrated Systems (2003)Google Scholar
  22. 22.
    Xie, X., Wu, N., Yuen, K., Wang, Q.: Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass. Int. J. Eng. Sci. 72, 98–106 (2013)CrossRefGoogle Scholar
  23. 23.
    Hou, P.F., Zhang, Y.: An accurate and efficient method for piezoelectric coated functional devices based on the two-dimensional Green’s function for a normal line force and line charge. Smart Mater. Struct. 26, 095045 (2017)CrossRefGoogle Scholar
  24. 24.
    Hou, P.F., Zhang, Y., Chen, B.J.: Study on the interactions between the coatings of electric conductor or dielectric media and piezoelectric substrate in the piezoelectric functional devices. AIP Adv. 7, 095109 (2017)CrossRefGoogle Scholar
  25. 25.
    Liu, T., Oates, W.S., Wan, S., Lynch, C.-S.: Crack initiation at electrode edges in PZN-4.5%PT single crystals. J. Intell. Mater. Syst. Struct. 16, 373–379 (2005)CrossRefGoogle Scholar
  26. 26.
    Danoyan, Z.N., Piliposian, G.T.: Surface electro-elastic Love waves in a layered structure with a piezoelectric substrate and a dielectric layer. Int. J. Solids Struct. 44(18–19), 5829–5847 (2007)CrossRefMATHGoogle Scholar
  27. 27.
    Shindo, Y., Narita, F., Sosa, H.: Electroelastic analysis of piezoelectric ceramics with surface electrodes. Int. J. Eng. Sci. 36, 1001–1009 (1998)CrossRefGoogle Scholar
  28. 28.
    Hou, P.F., Jiang, H.Y., Li, J.R.: A method for the orthotropic coating-substrate system: Green’s function for a normal line force on the surface. Int. J. Mech. Sci. 96–97, 172–181 (2015)CrossRefGoogle Scholar
  29. 29.
    Ding, H.J., Wang, G.Q., Chen, W.Q.: A boundary integral formulation and 2D fundamental solutions for piezoelectric media. Comput. Method. Appl. M. 158, 65–80 (1998)CrossRefMATHGoogle Scholar
  30. 30.
    Ding, H.J., Hou, P.F., Guo, F.L.: The elastic and electric fields for three-dimensional contact for transversely isotropic piezoelectric materials. Int. J. Solids. Struct. 37, 3201–3229 (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangshaPeople’s Republic of China
  2. 2.Department of Engineering MechanicsHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations