Skip to main content
Log in

On prototypical wave transmission across a junction of waveguides with honeycomb structure

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

An exact expression for the scattering matrix associated with a junction generated by partial unzipping along the zigzag direction of armchair tubes is presented. The assumed simple, but representative, model, for scalar wave transmission can be interpreted in terms of the transport of the out-of-plane phonons in the ribbon-side vis-a-vis the radial phonons in the tubular-side of junction, based on the nearest-neighbor interactions between lattice sites. The exact solution for the ‘bondlength’ in ‘broken’ versus intact bonds can be constructed via a standard application of the Wiener–Hopf technique. The amplitude distribution of outgoing phonons, far away from the junction on either side of it, is obtained in closed form by the mode-matching method; eventually, this leads to the provision of the scattering matrix. As the main result of the paper, a succinct and closed form expression for the accompanying reflection and transmission coefficients is provided along with a detailed derivation using the Chebyshev polynomials. Applications of the analysis presented in this paper include linear wave transmission in nanotubes, nanoribbons, and monolayers of honeycomb lattices containing carbon-like units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam, S., Brouwer, P.W., Sarma, S.D.: Crossover from quantum to Boltzmann transport in graphene. Phys. Rev. B 79(20), 201404 (2009)

    Article  Google Scholar 

  2. Aizawa, T., et al.: Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys. Rev. Lett. 64, 768–771 (1990). https://doi.org/10.1103/PhysRevLett.64.768

    Article  Google Scholar 

  3. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)

    Article  Google Scholar 

  4. Balandin, A.A., Nika, D.L.: Phononics in low-dimensional materials. Mater. Today 15(6), 266–275 (2012). https://doi.org/10.1016/S1369-7021(12)70117-7

    Article  Google Scholar 

  5. Berber, S., Kwon, Y.-K., Tománek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84, 4613–4616 (2000). https://doi.org/10.1103/PhysRevLett.84.4613

    Article  Google Scholar 

  6. Born, M., von Kármán, T.: On fluctuations in spatial grids. Z. Physik. 13, 297–309 (1912)

    MATH  Google Scholar 

  7. Brillouin, L.: Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. Dover Publications, New York (1953)

    MATH  Google Scholar 

  8. Cahangirov, S., et al.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102(23), 236804 (2009)

    Article  Google Scholar 

  9. Cahay, M., McLennan, M., Datta, S.: Conductance of an array of elastic scatterers: a scattering-matrix approach. Phys. Rev. B 37, 10125–10136 (1988). https://doi.org/10.1103/PhysRevB.37.10125

    Article  Google Scholar 

  10. Cahill, D.G., et al.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003). https://doi.org/10.1063/1.1524305

    Article  Google Scholar 

  11. Chebyshev, P.L.: Théorie des mécanismes connus sous le nom de parallélogrammes. In: Mém. Acad. Sci. Pétersb. The theory of mechanisms that are known under the name of parallelograms, vol. 7, pp. 539–568, (1854)

  12. Chico, L., et al.: Unzipped and defective nanotubes: rolling up graphene and unrolling tubes. Acta Phys. Pol. A. 118(3), 433 (2010)

    Article  Google Scholar 

  13. Ciraci, S., Buldum, A., Batra, I.P.: Quantum effects in electrical and thermal transport through nanowires. J. Phys. Condens. Matter 13(29), R537 (2001)

    Article  Google Scholar 

  14. Dresselhaus, M.: Carbon connections promise nanoelectronics. Phys. World 9(5), 18 (1996)

    Article  Google Scholar 

  15. Elías, A.L., et al.: Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett. 10(2), 366–372 (2009)

    Article  Google Scholar 

  16. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  17. Gillen, R., et al.: Vibrational properties of graphene nanoribbons by first-principles calculations. Phys. Rev. B 80, 155418 (2009). https://doi.org/10.1103/PhysRevB.80.155418

    Article  Google Scholar 

  18. Heremans, J., Beetz, C.P.: Thermal conductivity and thermopower of vapor-grown graphite fibers. Phys. Rev. B 32, 1981–1986 (1985). https://doi.org/10.1103/PhysRevB.32.1981

    Article  Google Scholar 

  19. Hopkins, P.E., et al.: Extracting phonon thermal conductance across atomic junctions: nonequilibrium Green’s function approach compared to semiclassical methods. J. Appl. Phys. 106.6, 063503 (2009). https://doi.org/10.1063/1.3212974

    Article  Google Scholar 

  20. Igami, M., Fujita, M., Mizuno, S.: Phonon dispersion of nano-graphite ribbons. Appl. Surf. Sci. 130–132, 870–875 (1998). https://doi.org/10.1016/S0169-4332(98)00168-8

    Article  Google Scholar 

  21. Imry, Y., Landauer, R.: Conductance viewed as transmission. Rev. Mod. Phys. 71, S306–S312 (1999). https://doi.org/10.1103/RevModPhys.71.S306

    Article  Google Scholar 

  22. Jiao, L., et al.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009)

    Article  Google Scholar 

  23. Jorio, A., Dresselhaus, G., Dresselhaus, M.S.: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-72865-8-5

    Book  MATH  Google Scholar 

  24. Kosynkin, D.V., et al.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009)

    Article  Google Scholar 

  25. Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1(3), 223–231 (1957). https://doi.org/10.1147/rd.13.0223

    Article  MathSciNet  Google Scholar 

  26. Landauer, R.: Conductance from transmission: common sense points. Phys. Scr. 1992(T42), 110 (1992)

    Article  Google Scholar 

  27. Lawler, H.M., et al.: Radial-breathing mode frequencies for single-walled carbon nanotubes of arbitrary chirality: first-principles calculations. Phys. Rev. B 72, 233403 (2005). https://doi.org/10.1103/PhysRevB.72.233403

    Article  Google Scholar 

  28. Maradudin, A.A., et al.: Theory of Lattice Dynamics in the Harmonic Approximation, 2nd edn. Academic Press, New York (1971)

    Google Scholar 

  29. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  30. Mikhlin, S.G., Prössdorf, S.: Singular Integral Operators. Springer, Basel (1986)

    Book  MATH  Google Scholar 

  31. Miklowitz, J.: The Theory of Elastic Waves and Waveguides. Applied Mathematics and Mechanics. North Holland Publishing Company, Amsterdam (1978)

    Google Scholar 

  32. Mingo, N., Broido, D.: Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95(9), 096105 (2005)

    Article  Google Scholar 

  33. Mittra, R., Lee, S.: Analytical Techniques in the Theory of Guided Waves. Macmillan series in electrical science. Macmillan, New York (1971)

    MATH  Google Scholar 

  34. Nazarov, Y.V., Blanter, Y.: Quantum Transport: Introduction to Nanoscience. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  35. Noble, B.: Methods Based on the Wiener–Hopf Technique. Pergamon Press, London (1958)

    MATH  Google Scholar 

  36. Oshima, C., et al.: Surface phonon dispersion curves of graphite (0001) over the entire energy region. Solid State Commun. 65(12), 1601–1604 (1988). https://doi.org/10.1016/0038-1098(88)90660-6

    Article  Google Scholar 

  37. Peierls, R.E.: Quantum Theory of Solids. International Series of Monographs on Physics. Clarendon Press, Oxford (1955)

    MATH  Google Scholar 

  38. Rechtsman, M.C., et al.: Photonic Floquet topological insulators. Nature 496(7444), 196–200 (2013)

    Article  Google Scholar 

  39. Rego, L.G.C., Kirczenow, G.: Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232–235 (1998). https://doi.org/10.1103/PhysRevLett.81.232

    Article  Google Scholar 

  40. Saito, R., Dresselhaus, G., Dresselhaus, M.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Book  MATH  Google Scholar 

  41. Sanders, G., et al.: Theory of coherent phonons in carbon nanotubes and graphene nanoribbons. J. Phys. Condens. Matter 25(14), 144201 (2013)

    Article  Google Scholar 

  42. Schwab, K., et al.: Measurement of the quantum of thermal conductance. Nature 404(6781), 974–977 (2000)

    Article  Google Scholar 

  43. Segal, D., Nitzan, A., Hänggi, P.: Thermal conductance through molecular wires. J. Chem. Phys. 119(13), 6840–6855 (2003)

    Article  Google Scholar 

  44. Sharma, B.L.: Discrete Sommerfeld diffraction problems on hexagonal lattice with a zigzag semi-infinite crack and rigid constraint. Zeitschrift für Angewandte Mathematik und Physik 66(6), 3591–3625 (2015). https://doi.org/10.1007/s00033-015-0574-2

    Article  MathSciNet  MATH  Google Scholar 

  45. Sharma, B.L.: Edge diffraction on triangular and hexagonal lattices: Existence, uniqueness, and finite section. Wave Motion 65, 55–78 (2016). https://doi.org/10.1016/j.wavemoti.2016.04.005

    Article  MathSciNet  Google Scholar 

  46. Sharma, B.L.: On linear waveguides of square and triangular lattice strips: an application of Chebyshev polynomials. Sādhanā 42(6), 901–927 (2017). https://doi.org/10.1007/s12046-017-0646-4

    MathSciNet  Google Scholar 

  47. Sharma, B.L.: On linear waveguides of zigzag honeycomb lattice. Waves Random Complex Media 28(1), 96–138 (2018). https://doi.org/10.1080/17455030.2017.1331061

    Article  MathSciNet  Google Scholar 

  48. Sharma, B.L.: Wave propagation in bifurcated waveguides of square lattice strips. SIAM J. Appl. Math. 76(4), 1355–1381 (2016). https://doi.org/10.1137/15M1051464

    Article  MathSciNet  MATH  Google Scholar 

  49. Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Springer, New York (2002)

    Book  MATH  Google Scholar 

  50. Tans, S.J., Verschueren, A.R., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998)

    Article  Google Scholar 

  51. Tour, J.M.: Top-down versus bottom-up fabrication of graphene-based electronics. Chem. Mater. 26(1), 163–171 (2013)

    Article  Google Scholar 

  52. Wang, J.-S., Wang, J., Lü, J.: Quantum thermal transport in nanostructures. Eur. Phys. J. B 62(4), 381–404 (2008)

    Article  Google Scholar 

  53. Wiener, N., Hopf, E.: Über eine Klasse singulärer Integralgleichungen. Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. 32, 696–706 (1931)

    MATH  Google Scholar 

  54. Yamamoto, T., Watanabe, K.: Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes. Phys. Rev. Lett. 96, 255503 (2006). https://doi.org/10.1103/PhysRevLett.96.255503

    Article  Google Scholar 

  55. Yamamoto, T., Watanabe, S., Watanabe, K.: Universal features of quantized thermal conductance of carbon nanotubes. Phys. Rev. Lett. 92, 075502 (2004). https://doi.org/10.1103/PhysRevLett.92.075502

    Article  Google Scholar 

  56. Zeng, H., et al.: White graphenes’: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 10(12), 5049–5055 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basant Lal Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B.L. On prototypical wave transmission across a junction of waveguides with honeycomb structure. Z. Angew. Math. Phys. 69, 16 (2018). https://doi.org/10.1007/s00033-018-0909-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0909-x

Mathematics Subject Classification

Keywords

Navigation