Skip to main content
Log in

Periodic traveling interfacial hydroelastic waves with or without mass

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the motion of an interface between two irrotational, incompressible fluids, with elastic bending forces present; this is the hydroelastic wave problem. We prove a global bifurcation theorem for the existence of families of spatially periodic traveling waves on infinite depth. Our traveling wave formulation uses a parameterized curve, in which the waves are able to have multivalued height. This formulation and the presence of the elastic bending terms allow for the application of an abstract global bifurcation theorem of “identity plus compact” type. We furthermore perform numerical computations of these families of traveling waves, finding that, depending on the choice of parameters, the curves of traveling waves can either be unbounded, reconnect to trivial solutions, or end with a wave which has a self-intersection. Our analytical and computational methods are able to treat in a unified way the cases of positive or zero mass density along the sheet, the cases of single-valued or multivalued height, and the cases of single-fluid or interfacial waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge Texts in Appllied Mathematics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  2. Akers, B., Ambrose, D.M., Wright, J.D.: Traveling waves from the arclength parameterization: vortex sheets with surface tension. Interfaces Free Bound. 15(3), 359–380 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akers, B.F., Gao, W.: Wilton ripples in weakly nonlinear model equations. Commun. Math. Sci 10(3), 1015–1024 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akers, B.F., Ambrose, D.M., Pond, K., Wright, J.D.: Overturned internal capillary-gravity waves. Eur. J. Mech. B. Fluids 57, 143–151 (2016)

    Article  MathSciNet  Google Scholar 

  5. Akers, B.F., Ambrose, D.M., Sulon, D.W.: Periodic traveling interfacial hydroelastic waves with or without mass II: Multiple bifurcations and ripples. Manuscript submitted for publication (2017). arXiv:1709.08076

  6. Akers, B.F., Ambrose, D.M., Wright, J.D.: Gravity perturbed Crapper waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470(2161):20130526, 14 (2014)

  7. Akers, B.F., Reeger, J.A.: Three-dimensional overturned traveling water waves. Wave Motion 68, 210–217 (2017)

    Article  MathSciNet  Google Scholar 

  8. Alben, S., Shelley, M.J.: Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100(7), 074301 (2008)

    Article  Google Scholar 

  9. Ambrose, D.M., Siegel, M.: Well-posedness of two-dimensional hydroelastic waves. Proc. Roy. Soc. Edinburgh Sect. A (2015)

  10. Ambrose, D.M., Strauss, W.A., Wright, J.D.: Global bifurcation theory for periodic traveling interfacial gravity-capillary waves. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(4), 1081–1101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baldi, P., Toland, J.F.: Bifurcation and secondary bifurcation of heavy periodic hydroelastic travelling waves. Interfaces Free Bound. 12(1), 1–22 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baldi, P., Toland, J.F.: Steady periodic water waves under nonlinear elastic membranes. J. Reine Angew. Math. 652, 67–112 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19, 577–593 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guyenne, P., Părău, E.I.: Computations of fully nonlinear hydroelastic solitary waves on deep water. J. Fluid Mech. 713, 307–329 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guyenne, P., Părău, E.I.: Finite-depth effects on solitary waves in a floating ice sheet. J. Fluids Struct. 49, 242–262 (2014)

    Article  Google Scholar 

  16. Haupt, S.E., Boyd, J.P.: Modeling nonlinear resonance: a modification to the stokes’ perturbation expansion. Wave Motion 10(1), 83–98 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kielhöfer, H.: Bifurcation Theory: An Introduction with Applications to Partial Differential Equations, vol. 156, 2nd edn. Springer, New York (2012)

  18. Liu, S., Ambrose, D.M.: Well-posedness of two-dimensional hydroelastic waves with mass. J. Differ. Equ. 262(9), 4656–4699 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Milewski, P.A., Vanden-Broeck, J.-M., Wang, Z.: Hydroelastic solitary waves in deep water. J. Fluid Mech. 679, 628–640 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milewski, P.A., Vanden-Broeck, J.-M., Wang, Z.: Steady dark solitary flexural gravity waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2150):20120485, 8 (2013)

  21. Milewski, P.A., Wang, Z.: Three dimensional flexural-gravity waves. Stud. Appl. Math. 131(2), 135–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Plotnikov, P.I., Toland, J.F.: Modelling nonlinear hydroelastic waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 369(1947), 2942–2956 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7(3), 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reeder, J., Shinbrot, M.: On Wilton ripples. I. Formal derivation of the phenomenon. Wave Motion 3(2), 115–135 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reeder, J., Shinbrot, M.: On Wilton ripples. II. Rigorous results. Arch. Ration. Mech. Anal. 77(4), 321–347 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Squire, V.A., Dugan, J.P., Wadhams, P., Rottier, P.J., Liu, A.K.: Of ocean waves and sea ice. Ann. Rev. Fluid Mech. 27(1), 115–168 (1995)

    Article  MathSciNet  Google Scholar 

  27. Toland, J.F.: Heavy hydroelastic travelling waves. Proc. R. Soc. Lond. Ser. A Math. Phys Eng. Sci. 463(2085), 2371–2397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Toland, J.F.: Steady periodic hydroelastic waves. Arch. Ration. Mech. Anal. 189(2), 325–362 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Trichtchenko, O., Deconinck, B., Wilkening, J.: The instability of wilton ripples. Wave Motion 66, 147–155 (2016)

    Article  MathSciNet  Google Scholar 

  30. Wang, Z., Părău, E.I., Milewski, P.A., Vanden-Broeck, J.-M.: Numerical study of interfacial solitary waves propagating under an elastic sheet. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470(2168):20140111, 17 (2014)

  31. Wang, Z., Vanden-Broeck, J.-M., Milewski, P.A.: Two-dimensional flexural-gravity waves of finite amplitude in deep water. IMA J. Appl. Math. 78(4), 750–761 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wilton, J.R.: LXXII. On ripples. The London, Edinburgh, and Dublin. Philos. Mag. J. Sci. 29(173), 688–700 (1915)

    Article  Google Scholar 

  33. Wolfram Research Inc. Mathematica 10.3 student edition, Champaign, IL (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Sulon.

Additional information

This work was supported in part from a grant from the Office of Naval Research (ONR grant APSHEL to Dr. Akers). Dr. Ambrose is grateful to support from the NSF through Grant DMS-1515849.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akers, B.F., Ambrose, D.M. & Sulon, D.W. Periodic traveling interfacial hydroelastic waves with or without mass. Z. Angew. Math. Phys. 68, 141 (2017). https://doi.org/10.1007/s00033-017-0884-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0884-7

Mathematics Subject Classification

Keywords

Navigation