Hemihelical local minimizers in prestrained elastic bi-strips

  • Marco Cicalese
  • Matthias Ruf
  • Francesco SolombrinoEmail author


We consider a double-layered prestrained elastic rod in the limit of vanishing cross section. For the resulting limit Kirchhoff rod model with intrinsic curvature, we prove a supercritical bifurcation result, rigorously showing the emergence of a branch of hemihelical local minimizers from the straight configuration, at a critical force and under clamping at both ends. As a consequence we obtain the existence of nontrivial local minimizers of the 3-d system.


Hemihelical minimizers Prestrain Bifurcation Elasticity 

Mathematics Subject Classification

34K18 74K10 49J45 74B20 


  1. 1.
    Agostiniani, V., DeSimone, A.: Rigorous derivation of active plate models for thin sheets of nematic elastomers. Math. Mech. Solids (2017). doi: 10.1177/1081286517699991 Google Scholar
  2. 2.
    Agostiniani, V., DeSimone, A., Koumatos, K.: Shape programming for narrow ribbons of nematic elastomers. J. Elast. 127, 1–24 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, vol. 34. Cambridge University Press, Cambridge (1993)Google Scholar
  4. 4.
    Bhattacharya, K., Lewicka, M., Schäffner, M.: Plates with incompatible prestrain. Arch. Ration. Mech. Anal. 221(1), 143–181 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cicalese, M., Ruf, M., Solombrino, F.: On global and local minimizers of prestrained thin elastic rods. Cal. Var. Partial Differ. Equ. 56, 115 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Crandall, M.G., Rabinowitz, P.H.: Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Ration. Mech. Anal. 52, 161–180 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kohn, R.V., O’Brien, E.: On the bending and twisting of rods with misfit. J. Elast. (2017). doi: 10.1007/s10659-017-9635-4 Google Scholar
  9. 9.
    Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. R. Soc. Edinb. Sect. A 111, 69–84 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lestringant, C., Audoly, B.: Elastic rods with incompatible strain: Macroscopic versus microscopic buckling. J. Mech. Phys. Solids 103, 40–71 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Föppl-von Karmann equations for plates with incompatible strains. Proc. R. Soc. A 467, 402–426 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lewicka, M., Mahadevan, L., Pakzad, M.R.: Models for elastic shells with incompatible strains. Proc. R. Soc. A 470, 1471–2946 (2014)CrossRefGoogle Scholar
  13. 13.
    Liu, J., Huang, J., Su, T., Bertoldi, K., Clark, D.R.: Structural transition from helices to hemihelices. PLoS ONE 9, e93183 (2014)CrossRefGoogle Scholar
  14. 14.
    McMillen, T., Goriely, A.: Tendril perversion in intrinsically curved rods. J. Nonlinear Sci. 12(3), 241–281 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schmidt, B.: Plate theory for stressed heterogeneous multilayers of finite bending energies. J. Math. Pures Appl. 88(1), 107–122 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marco Cicalese
    • 1
  • Matthias Ruf
    • 1
  • Francesco Solombrino
    • 1
    • 2
    Email author
  1. 1.Zentrum Mathematik - M7Technische Universität MünchenGarchingGermany
  2. 2.Dip. Mat. Appl. “Renato Caccioppoli”Univ. Napoli “Federico II”NaplesItaly

Personalised recommendations