Magneto-hydrodynamical model for plasma

  • Ruikuan Liu
  • Jiayan Yang


Based on the Newton’s second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.


Maxwell equations Plasma Coulomb gauge Magneto-hydrodynamics Galerkin method 

Mathematics Subject Classifications

76W05 35Q61 82D10 35Q30 35Q35 


  1. 1.
    Ahmadi, G., Shahinpoor, M.: Universal stability of magneto-micropolar fluid motions. Int. J. Eng. Sci. 12, 657–663 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bittencourt, J.A.: Fundamentals of Plasma Physics. Pergamon Press, Oxford (1986)zbMATHGoogle Scholar
  3. 3.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics Clarendon Press, Oxford (1961)zbMATHGoogle Scholar
  4. 4.
    Duvaut, G., Lions, J.L.: In\(\acute{e}\)quations en thermo\(\acute{e}\)lasticit\(\acute{e}\) et magn\(\acute{e}\)tohy -drodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)CrossRefGoogle Scholar
  5. 5.
    Evans L.C.: Weak convergence methods for nonlinear partial differential equations. CBMS Regional Conference Series in Mathematics, 74. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1990)Google Scholar
  6. 6.
    Forbes, T.G.: Magnetic reconnection in solar flares. Geophys. Astrophys. Fluid Dyn. 62, 15–36 (1991)CrossRefGoogle Scholar
  7. 7.
    Fan, J., Ozawa, T.: Regularity criteria for the density-dependent Hall-magnetohydrodynamics. Appl. Math. Lett. 36, 14–18 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Homann, H., Grauer, R.: Bifurcation analysis of magnetic reconnection in Hall-MHD systems. Physica D 208, 59–72 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    He, C., Xin, Z.: Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J. Funct. Anal. 227, 113–152 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kang, K., Lee, J.: Interior regularity criteria for suitable weak solutions of the magnetohydrodynamic equations. J. Differ. Equ. 247, 2310–2330 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kang, K., Kim, J.M.: Regularity criteria of the magnetohydrodynamic equations in bounded domains or a half space. J. Differ. Equ. 253, 764–794 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kang, K., Kim, J.M.: Boundary regularity criteria for suitable weak solutions of the magnetohydrodynamic equations. J. Funct. Anal. 266, 99–120 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liverts, E., Mond, M.: The Hall instability in accelerated plasma channels. Phys. Plasmas 11, 55–61 (2004)CrossRefGoogle Scholar
  14. 14.
    Marion, A., Pierre, D., Amic, F., Liu, J.G.: Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinet. Relat. Models 4, 901–918 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ma, T., Wang, S.: Phase Transition Dynamics. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ma, T., Wang, S.: Mathematical Principles of Theoretical Physics. Science Press, Beijing (2015)Google Scholar
  17. 17.
    Mikaberidze, G., Berezhiani, V.I.: Standing electromagnetic solitons in degenerate relativistic plasmas. Phys. Lett. A 42, 2730–2734 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Schnack D. D.: Lectures in magnetohydrodynamics. With an appendix on extended MHD. Lecture Notes in Physics, vol. 780. Springer, Berlin (2009)Google Scholar
  19. 19.
    Shumlak, U., Loverich, J.: Approximate Riemann solver for the two-fluid plasma model. J. Comput. Phys. 187, 620–638 (2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis, 3rd edn. North-Holland, Amsterdam (1984)zbMATHGoogle Scholar
  22. 22.
    Wang, H., Wang Q., Liu R.: A time-dependent perturbation solution from a steady state for Marangoni problem. Appl. Anal. (2017). doi: 10.1080/00036811.2017.1317089
  23. 23.
    Wang, W., Zhang, Z.: On the interior regularity criteria for suitable weak solutions of the magnetohydrodynamics equations. SIAM J. Math. Anal. 45, 2666–2677 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yamazaki, K.: Global regularity of N-dimensional generalized MHD system with anisotropic dissipation and diffusion. Nonlinear Anal. 122, 176–191 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yamazaki, K.: Remarks on the regularity criteria of generalized MHD and Navier–Stokes systems. J. Math. Phys. 54, 011502 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ye, Z.: Regularity criteria and small data global existence to the generalized viscous Hall-magnetohydrodynamics. Comput. Math. Appl. 70, 2137–2154 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations