On magnetoelectric coupling at equilibrium in continua with microstructure

Article
  • 36 Downloads

Abstract

A theory of micromorphic continua, applied to electromagnetic solids, is exploited to study magnetoelectric effects at equilibrium. Microcurrents are modeled by the microgyration tensor of stationary micromotions, compatibly with the balance equations for null microdeformation. The equilibrium of the continuum subject to electric and magnetic fields is reformulated accounting for electric multipoles which are related to microdeformation by evolution equations. Polarization and magnetization are derived for uniform fields under the micropolar reduction in terms of microstrain and octupole structural parameters. Nonlinear dependance on the electromagnetic fields is evidenced, compatibly with known theoretical and experimental results on magnetoelectric coupling.

Keywords

Magnetoelectric coupling Continua with microstructure Polarization and magnetization 

Mathematics Subject Classification

74F15 74A60 74G99 

References

  1. 1.
    Fiebing, M.: Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123 (2005)CrossRefGoogle Scholar
  2. 2.
    Khomskii, D.: Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009)CrossRefGoogle Scholar
  3. 3.
    Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier, Amsterdam (1988)MATHGoogle Scholar
  4. 4.
    Eringen, A.C., Maugin, G.A.: Electrodynamics of continua I. Springer, New York (1990)CrossRefGoogle Scholar
  5. 5.
    Romeo, M.: Micromorphic continuum model for electromagnetoelastic solids. ZAMP 62, 513–527 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Eringen, A.C.: Continuum theory of micromorphic electromagnetic thermoelastic solids. Int. J. Eng. Sci. 41, 653–665 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Lee, J.D., Chen, Y., Eskandarian, A.: A micromorphic electromagnetic theory. Int. J. Solids Struct. 41, 2099–2110 (2004)CrossRefMATHGoogle Scholar
  8. 8.
    Romeo, M.: A microstructure continuum approach to electromagneto-elastic conductors. Contin. Mech. Thermodyn. 28, 1807–1820 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Eringen, A.C.: Microcontinuum Field Theories I—Foundations and Solids. Springer, New York (1999)CrossRefMATHGoogle Scholar
  10. 10.
    Romeo, M.: Polarization in dielectrics modeled as micromorphic continua. ZAMP 66, 1233–1247 (2015)MathSciNetMATHGoogle Scholar
  11. 11.
    Hirose, S., Haruki, K., Ando, A., Kimura, T.: Mutual control of magnetization and electrical polarization by electric and magnetic fields at room temperature in Y-type \(\text{BaSrCo}_{2-x}\text{Zn}_x\text {Fe}_{11}\text{AlO}_{22}\) ceramics. Appl. Phys. Lett. 104, 022907 (2014)CrossRefGoogle Scholar
  12. 12.
    Resta, R.: Electrical polarization and orbital magnetization: the modern theories. J. Phys. Condens. Matter 22, 123201 (2010)CrossRefGoogle Scholar
  13. 13.
    Solovyev, I.V., Pchelkina, Z.V.: Magnetic-field control of the electric polarization in \(\text{BiMnO}_3\). Phys. Rev. B 82, 094425 (2010)CrossRefGoogle Scholar
  14. 14.
    Baker-Jarvis, J., Kabos, P.: Dynamic constitutive relations for polarization and magnetization. Phys. Rev. E 64, 056127 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DIMA UniversitàGenoaItaly

Personalised recommendations