On the spatial behavior in two-temperature generalized thermoelastic theories

Article

Abstract

This paper investigates the spatial behavior of the solutions of two generalized thermoelastic theories with two temperatures. To be more precise, we focus on the Green–Lindsay theory with two temperatures and the Lord–Shulman theory with two temperatures. We prove that a Phragmén–Lindelöf alternative of exponential type can be obtained in both cases. We also describe how to obtain a bound on the amplitude term by means of the boundary conditions for the Green–Lindsay theory with two temperatures.

Keywords

Generalized thermoelasticity with two temperatures Spatial behavior Phragmén–Lindelöf alternative 

Mathematics Subject Classification

35B53 74F05 35B40 

References

  1. 1.
    Awad, E.: A note on the spatial decay estimates in non-classical linear thermoelastic semi-cylindrical bounded domains. J. Therm. Stress. 34, 147–160 (2011)CrossRefGoogle Scholar
  2. 2.
    Banik, S., Kanoria, M.: Two-temperature generalized thermoelastic interactions in an infinite body with a spherical cavity. Int. J. Thermophys. 32, 1247–1270 (2011)CrossRefGoogle Scholar
  3. 3.
    Chen, P.J., Gurtin, M.E.: On a theory of heat involving two temperatures. J. Appl. Math. Phys. (ZAMP) 19, 614–627 (1968)CrossRefMATHGoogle Scholar
  4. 4.
    Chen, P.J., Gurtin, M.E., Williams, W.O.: A note on non-simple heat conduction. J. Appl. Math. Phys. (ZAMP) 19, 969–970 (1968)CrossRefGoogle Scholar
  5. 5.
    Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of non-simple materials with two temperatures. J. Appl. Math. Phys. (ZAMP) 20, 107–112 (1969)CrossRefMATHGoogle Scholar
  6. 6.
    Chirita, S., Quintanilla, R.: Spatial decay estimates of Saint-Venant type in generalized thermoelasticity. Int. J. Eng. Sci. 34, 299–311 (1996)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Díaz, J.I., Quintanilla, R.: Spatial and continuous dependence estimates in viscoelasticity. J. Math. Anal. Appl. 273, 1–16 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    El-Karamany, A.S., Ezzat, M.A.: On the two-temperature Green–Naghdi thermoelasticity theories. J. Therm. Stress. 34, 1207–1226 (2011)CrossRefGoogle Scholar
  9. 9.
    Flavin, J.N., Knops, R.J., Payne, L.E.: Decay estimates for the constrained elastic cylinder of variable cross-section. Q. Appl. Math. 47, 325–350 (1989)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Flavin, J.N., Knops, R.J., Payne, L.E.: Energy bounds in dynamical problems for a semi-infinite elastic beam. In: Eason, G., Ogden, R.W. (eds.) Elasticity: Mathematical Methods and Applications, pp. 101–111. Ellis Horwood, Chichester (1989)Google Scholar
  11. 11.
    Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)CrossRefMATHGoogle Scholar
  12. 12.
    Horgan, C.O.: Recent developments concerning Saint-Venant’s principle: a second update. Appl. Mech. Rev. 49, 101–111 (1996)CrossRefGoogle Scholar
  13. 13.
    Horgan, C.O., Payne, L.E., Wheeler, L.T.: Spatial decay estimates in transient heat conduction. Q. Appl. Math. 42, 119–127 (1984)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Horgan, C.O., Quintanilla, R.: Spatial decay of transient end effects in functionally graded heat conducting materials. Q. Appl. Math. 59, 529–542 (2001)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ieşan, D.: On the linear coupled thermoelasticity with two temperatures. J. Appl. Math. Phys. (ZAMP) 21, 383–391 (1970)MathSciNetMATHGoogle Scholar
  16. 16.
    Leseduarte, M.C., Quintanilla, R.: On the backward in time problem for the thermoelasticity with two temperatures. Discrete Contin. Dyn. Syst. Ser. B 19, 679–695 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Leseduarte, M.C., Quintanilla, R., Racke, R.: On (non-)exponential decay in generalized thermoelasticity with two temperatures. Appl. Math. Lett. 70, 18–25 (2017)Google Scholar
  18. 18.
    Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoealsticity. J. Mech. Phys. Solids 15, 299–309 (1967)CrossRefMATHGoogle Scholar
  19. 19.
    Magaña, A., Quintanilla, R.: Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories. Math. Mech. Solids 14, 622–634 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Miranville, A., Quintanilla, R.: A generalization of the Caginalp phase-field system based on the Cattaneo law. Nonlinear Anal. TMA 71, 2278–2290 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Miranville, A., Quintanilla, R.: Some generalizations of the Caginalp phase-field system. Appl. Anal. 88, 877–894 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Miranville, A., Quintanilla, R.: A phase-field model based on a three-phase-lag heat conduction. Appl. Math. Optim. 63, 133–150 (2011)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Miranville, A., Quintanilla, R.: A type III phase-field system with a logarithmic potential. Appl. Math. Lett. 24, 1003–1008 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Miranville, A., Quintanilla, R.: Spatial decay for several phase-field models. J. Appl. Math. Mech. (ZAMM) 93, 801–810 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Miranville, A., Quintanilla, R.: A generalization of the Allen–Cahn equation. IMA J. Appl. Math. 80, 410–430 (2015)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Mukhopadhyay, S., Kumar, R.: Thermoelastic interactions on two temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity. J. Therm. Stress. 32, 341–360 (2009)CrossRefGoogle Scholar
  27. 27.
    Payne, L.E., Song, J.C.: Growth and decay in generalized thermoelasticity. Int. J. Eng. Sci. 40, 385–400 (2002)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Quintanilla, R.: Damping of end effects in a thermoelastic theory. Appl. Math. Lett. 14, 137–141 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Quintanilla, R.: On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mech. 168, 61–73 (2004)CrossRefMATHGoogle Scholar
  30. 30.
    Quintanilla, R.: Exponential stability and uniqueness in thermoelasticity with two temperatures. Dyn. Contin. Discrete Impuls. Syst. A 11, 57–68 (2004)MathSciNetMATHGoogle Scholar
  31. 31.
    Quintanilla, R.: A well-posed problem for the three-dual-phase-lag heat conduction. J. Therm. Stress. 32, 1270–1278 (2009)CrossRefGoogle Scholar
  32. 32.
    Warren, W.E., Chen, P.J.: Wave propagation in two temperatures theory of thermoelasticity. Acta Mech. 16, 83–117 (1973)CrossRefGoogle Scholar
  33. 33.
    Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71, 383–390 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et Applications, UMR CNRS 7348 - SP2MIUniversité de PoitiersChasseneuil Futuroscope CedexFrance
  2. 2.ESEIAAT-UPC MatemàticaTerrassaSpain

Personalised recommendations