Energy stability of droplets and dry spots in a thin film model of hanging drops



The 2-D thin film equation describing the evolution of hang drops is studied. All radially symmetric steady states are classified, and their energy stability is determined. It is shown that the droplet with zero contact angle is the only global energy minimizer and the dry spot with zero contact angle is a strict local energy minimizer.


Energy stable solution Radial symmetry The thin film equation Droplets with zero contact angle 

Mathematics Subject Classification

Primary 76A20 Secondary 35B35 35K55 


  1. 1.
    Bertozzi, A.L., Pugh, M.C.: The lubrication approximation for thin viscous films: regularity and long time behavior of weak solutions. Commun. Pure Appl. Math. 49, 85–123 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bertsch, M., Dal Passo, R., Garke, H., Grün, G.: The thin viscous flow equation in higher dimensions. Adv. Differ. Equ. 3, 417–440 (1998)MathSciNetMATHGoogle Scholar
  3. 3.
    Cheung, K.L., Chou, K.S.: On the stability of single and multiple droplets for equations of thin film type. Nonlinearity 23, 3003–3028 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cheung, K.L., Chou, K.S.: A symmetry result for an elliptic problem arising from the 2-D thin film equation. AMS Proc. 145, 853–860 (2017)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chou, K.S., Zhang, Z.: A mountain pass scenario and heteroclinic orbits for thin film type equations. Nonlinearity 25, 3343–3388 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dal Passo, R., Garcke, H., Grün, G.: On a forth-order degenerate parabolic equation: a local entropy estimate, existence, and quaditative behavior of solutions. SIAM J. Math. Anal. 29, 321–342 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Elbert, A.: Some recent results on the zeros of Bessel functions and orthogonal polynomials. J. Comput. Appl. Math. 133, 65–83 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fermigier, M., Limat, L., Wesfreid, J.E., Boudinet, P., Quilliet, C.: Two-dimensiona patterns in Rayleigh–Taylor instability of a thin layer. J. Fluid Mech. 236, 349–383 (1992)CrossRefMATHGoogle Scholar
  9. 9.
    Hammond, P.S.: Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe. J. Fluid Mech. 137, 363–384 (1983)Google Scholar
  10. 10.
    Laugesen, R.S., Pugh, M.C.: Properties of steady states for thin film equations. Eur. J. Appl. Math. 11, 293–351 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Laugesen, R.S., Pugh, M.C.: Linear stability of steady states for thin film and Cahn–Hilliard type equations. Arch. Ration. Mech. Anal. 154, 3–51 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Laugesen, R.S., Pugh, M.C.: Energy levels of steady states for thin film type equations. J. Differ. Equ. 182, 377–415 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Laugesen, R.S., Pugh, M.C.: Heteroclinic orbits, mobility parameters and stability for thin film type equations. Electron. J. Differ. Equ. 95, 1–29 (2002)MathSciNetMATHGoogle Scholar
  14. 14.
    Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)CrossRefGoogle Scholar
  15. 15.
    Oron, A., Rosenau, P.: On a nonlinear thermocapillary effect in thin liquid layers. J. Phys. (France) II(2), 131–146 (1997)MATHGoogle Scholar
  16. 16.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)MATHGoogle Scholar
  17. 17.
    Yiantsios, S.G., Higgins, B.G.: Rayleigh–Taylor instability in thin viscous films. Phys. Fluids A 1, 1484–1501 (1989)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Information TechnologyThe Education University of Hong KongTai PoHong Kong
  2. 2.Department of MathematicsThe Chinese University of Hong KongShatinHong Kong

Personalised recommendations