Stability of periodic steady-state solutions to a non-isentropic Euler–Maxwell system

  • Cunming Liu
  • Yue-Jun Peng


This paper is concerned with a stability problem in a periodic domain for a non-isentropic Euler–Maxwell system without temperature diffusion term. This system is used to describe the dynamics of electrons in magnetized plasmas when the ion density is a given smooth function which can be large. When the initial data are close to the steady states of the system, we show the global existence of smooth solutions which converge toward the steady states as the time tends to infinity. We make a change of unknown variables and choose a non-diagonal symmetrizer of the full Euler equations to get the dissipation estimates. We also adopt an induction argument on the order of derivatives of solutions in energy estimates to get the stability result.


Euler–Maxwell system Global smooth solution Stability Steady-state solution Energy estimate 

Mathematics Subject Classification

35B40 35Q60 35Q35 


  1. 1.
    Besse, C., Degond, P., Deluzet, F., Claudel, J., Gallice, G., Tessieras, C.: A model hierarchy for ionospheric plasma modeling. Math. Models Methods Appl. Sci. 14, 393–415 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chen, F.: Introduction to plasma physics and controlled fusion, vol. 1. Plenum Press, New York (1984)CrossRefGoogle Scholar
  3. 3.
    Chen, G.Q., Jerome, J.W., Wang, D.: Compressible Euler–Maxwell equations. Trans. Theory Statist. Phys. 29, 311–331 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Degond, P., Markowich, P.: A steady state potential flow model for semiconductors. Ann. Mat. Pura Appl. 52, 87–98 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Duan, R.J.: Global smooth flows for the compressible Euler–Maxwell systems: the relaxation case. J. Hyperbol. Diff. Equ. 8, 375–413 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Feng, Y.H., Peng, Y.J., Wang, S.: Stability of non-constant equilibrium solutions for two-fluid Euler–Maxwell systems. Nonlinear Anal. Real World Appl. 26, 372–390 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Feng, Y.H., Wang, S., Kawashima, S.: Global existence and asymptotic decay of solutions to the non-isentropic Euler–Maxwell system. Math. Meth. Appl. Sci. 24, 2851–2884 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Feng, Y.H., Wang, S., Li, X.: Stability of non-constant steady-state solutions for non-isentropic Euler–Maxwell system with a temperature damping term. Math. Meth. Appl. Sci. 39, 2514–2528 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Germain, P., Masmoudi, N.: Global existence for the Euler–Maxwell system. Ann. Sci. Ecole Norm. Supér. 47, fascicule 3, 469–503 (2014) Google Scholar
  10. 10.
    Guo, Y., Strauss, W.: Stability of semiconductor states with insulating and contact boundary conditions. Arch. Ration. Mech. Anal. 170, 1–30 (2005)MathSciNetMATHGoogle Scholar
  11. 11.
    Guo, Y., Ionescu, A., Pausader, B.: Global solutions of the Euler–Maxwell two-fluid system in 3D. Ann. of Math. 183, 377–498 (2016)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kato, T.: The cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM Regional Conf. Lecture, No. 11, Philadelphia, (1973)Google Scholar
  15. 15.
    Li, X., Wang, S., Feng, Y.H.: Stability of non-constant steady-state solutions for bipolar non-isentropic Euler–Maxwell equations with damping terms. Z. Angew. Math. Phys. 67(5), 27 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Liu, C.M., Peng, Y.J.: Stability of periodic steady-state solutions to a non-isentropic Euler–Poisson system. J. Diff. Equ. 262, 5497–5517 (2017)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Liu, Q.Q., Zhu, C.J.: Asymptotic stability of stationary solutions to the compressible Euler–Maxwell equations. Indiana Univ. Math. J. 62, 1203–1235 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. Springer-Verlag, New York (1984)CrossRefMATHGoogle Scholar
  19. 19.
    Peng, Y.J.: Stability of non-constant equilibrium solutions for Euler–Maxwell equations. J. Math. Pure. Appl. 103, 39–67 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Peng, Y.J., Wang, S., Gu, Q.L.: Relaxation limit and global existence of smooth solutions of compressible Euler–Maxwell equations. SIAM J. Math. Anal. 43, 940–970 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ueda, Y., Kawashima, S.: Decay property of regularity-loss type for the Euler–Maxwell system. Methods Appl. Anal. 18, 245–267 (2011)MathSciNetMATHGoogle Scholar
  22. 22.
    Xu, J.: Global classical solutions to the compressible Euler–Maxwell equations. SIAM J. Math. Anal. 43(6), 2688–2718 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsQufu Normal UniversityQufuChina
  2. 2.Department of MathematicsTaiyuan University of TechnologyTaiyuanChina
  3. 3.Université Clermont Auvergne, CNRS, Laboratoire de Mathématiques Blaise PascalClermont-FerrandFrance

Personalised recommendations