Skip to main content
Log in

Stability of periodic steady-state solutions to a non-isentropic Euler–Maxwell system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper is concerned with a stability problem in a periodic domain for a non-isentropic Euler–Maxwell system without temperature diffusion term. This system is used to describe the dynamics of electrons in magnetized plasmas when the ion density is a given smooth function which can be large. When the initial data are close to the steady states of the system, we show the global existence of smooth solutions which converge toward the steady states as the time tends to infinity. We make a change of unknown variables and choose a non-diagonal symmetrizer of the full Euler equations to get the dissipation estimates. We also adopt an induction argument on the order of derivatives of solutions in energy estimates to get the stability result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse, C., Degond, P., Deluzet, F., Claudel, J., Gallice, G., Tessieras, C.: A model hierarchy for ionospheric plasma modeling. Math. Models Methods Appl. Sci. 14, 393–415 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, F.: Introduction to plasma physics and controlled fusion, vol. 1. Plenum Press, New York (1984)

    Book  Google Scholar 

  3. Chen, G.Q., Jerome, J.W., Wang, D.: Compressible Euler–Maxwell equations. Trans. Theory Statist. Phys. 29, 311–331 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Degond, P., Markowich, P.: A steady state potential flow model for semiconductors. Ann. Mat. Pura Appl. 52, 87–98 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan, R.J.: Global smooth flows for the compressible Euler–Maxwell systems: the relaxation case. J. Hyperbol. Diff. Equ. 8, 375–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng, Y.H., Peng, Y.J., Wang, S.: Stability of non-constant equilibrium solutions for two-fluid Euler–Maxwell systems. Nonlinear Anal. Real World Appl. 26, 372–390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feng, Y.H., Wang, S., Kawashima, S.: Global existence and asymptotic decay of solutions to the non-isentropic Euler–Maxwell system. Math. Meth. Appl. Sci. 24, 2851–2884 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng, Y.H., Wang, S., Li, X.: Stability of non-constant steady-state solutions for non-isentropic Euler–Maxwell system with a temperature damping term. Math. Meth. Appl. Sci. 39, 2514–2528 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Germain, P., Masmoudi, N.: Global existence for the Euler–Maxwell system. Ann. Sci. Ecole Norm. Supér. 47, fascicule 3, 469–503 (2014)

  10. Guo, Y., Strauss, W.: Stability of semiconductor states with insulating and contact boundary conditions. Arch. Ration. Mech. Anal. 170, 1–30 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Guo, Y., Ionescu, A., Pausader, B.: Global solutions of the Euler–Maxwell two-fluid system in 3D. Ann. of Math. 183, 377–498 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kato, T.: The cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM Regional Conf. Lecture, No. 11, Philadelphia, (1973)

  15. Li, X., Wang, S., Feng, Y.H.: Stability of non-constant steady-state solutions for bipolar non-isentropic Euler–Maxwell equations with damping terms. Z. Angew. Math. Phys. 67(5), 27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, C.M., Peng, Y.J.: Stability of periodic steady-state solutions to a non-isentropic Euler–Poisson system. J. Diff. Equ. 262, 5497–5517 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Q.Q., Zhu, C.J.: Asymptotic stability of stationary solutions to the compressible Euler–Maxwell equations. Indiana Univ. Math. J. 62, 1203–1235 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. Springer-Verlag, New York (1984)

    Book  MATH  Google Scholar 

  19. Peng, Y.J.: Stability of non-constant equilibrium solutions for Euler–Maxwell equations. J. Math. Pure. Appl. 103, 39–67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng, Y.J., Wang, S., Gu, Q.L.: Relaxation limit and global existence of smooth solutions of compressible Euler–Maxwell equations. SIAM J. Math. Anal. 43, 940–970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ueda, Y., Kawashima, S.: Decay property of regularity-loss type for the Euler–Maxwell system. Methods Appl. Anal. 18, 245–267 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Xu, J.: Global classical solutions to the compressible Euler–Maxwell equations. SIAM J. Math. Anal. 43(6), 2688–2718 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Jun Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Peng, YJ. Stability of periodic steady-state solutions to a non-isentropic Euler–Maxwell system. Z. Angew. Math. Phys. 68, 105 (2017). https://doi.org/10.1007/s00033-017-0848-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0848-y

Keywords

Mathematics Subject Classification

Navigation