Advertisement

Bands in the spectrum of a periodic elastic waveguide

Article

Abstract

We study the spectral linear elasticity problem in an unbounded periodic waveguide, which consists of a sequence of identical bounded cells connected by thin ligaments of diameter of order \( h >0\). The essential spectrum of the problem is known to have band-gap structure. We derive asymptotic formulas for the position of the spectral bands and gaps, as \(h \rightarrow 0\).

Keywords

Elliptic system Linearized elasticity problem Essential spectrum Spectral band Spectral gap Asymptotic analysis Floquet–Bloch theory 

Mathematics Subject Classification

Primary 35J57 Secondary 35P99 35Q74 74J05 

References

  1. 1.
    Bakharev, F.L., Nazarov, S.A.: Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions. Sib. Math. J. 56(4), 575–592 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bakharev, F.L., Nazarov, S.A., Ruotsalainen, K.: On the spectrum of Neumann–Laplacian on a cylinder with periodically immersed obstacles. Appl. Anal. 92(9), 1889–1915 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bakharev, F.L., Ruotsalainen, K., Taskinen, J.: Spectral gaps for the linear surface wave model in periodic channels. Q. J. Mech. Appl. Math. 67(3), 343–362 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Birman, M.S., Solomyak, M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. Reidel Publishing Company, Dordrecht (1986)CrossRefMATHGoogle Scholar
  5. 5.
    Cardone, G., Minutolo, V., Nazarov, S.A.: Gaps in the essential spectrum of periodic elastic waveguides. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 89(9), 729–741 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cardone, G., Nazarov, S.A., Perugia, C.: A gap in the continuous spectrum of a cylindrical waveguide with a periodic perturbation of the surface. Math. Nachr. 283(9), 1222–1244 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Figotin, A., Kuchment, P.: Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model. SIAM J. Appl. Math. 56, 68–88 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Figotin, A., Kuchment, P.: Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals. SIAM J. Appl. Math. 56, 1561–1620 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Filonov, N.: Gaps in the spectrum of the Maxwell operator with periodic coefficients. Commun. Math. Phys. 240(1–2), 161–170 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Friedlander, L.: On the density of states of periodic media in the large coupling limit. Commun. Partial Differ. Equ. 27, 355–380 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Friedlander, L., Solomyak, M.: On the spectrum of narrow periodic waveguides. Russ. J. Math. Phys. 15(2), 238–242 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gelfand, I.M.: Expansion in characteristic functions of an equation with periodic coefficients. Dokl. Akad. Nauk. SSSR 73, 1117–1120 (1950). (in Russian) MathSciNetGoogle Scholar
  13. 13.
    Green, E.L.: Spectral theory of Laplace–Beltrami operators with periodic metrics. J. Differ. Equ. 133, 15–29 (1997)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hempel, R., Lineau, K.: Spectral properties of the periodic media in large coupling limit. Commun. Partial Differ. Equ. 25, 1445–1470 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Il’in, A.M.: Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Translations of Mathematical Monographs, vol. 102. American Mathematical Society, Providence (1992)Google Scholar
  16. 16.
    Kondratiev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Mosk. Mat. Obsc. 16, 209–292 (1967). (in Russian) MathSciNetGoogle Scholar
  17. 17.
    Kondratiev, V.A., Oleinik, O.A.: On Korn’s inequalities. C. R. Acad. Sci. Paris Ser. I 308, 483–487 (1989)Google Scholar
  18. 18.
    Kuchment, P.: Floquet theory for partial differential equations. Uspekhi Mat. Nauk. 37(4), 3–52 (1982). (in Russian); (English transl: Russ. Math. Surv. 37(4), 1–60 (1982))Google Scholar
  19. 19.
    Ladyshenskaja, O.A.: Boundary Value Problems of Mathematical Physics. Springer, New York (1985)CrossRefGoogle Scholar
  20. 20.
    Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics, vol. 7. Theory of Elasticity. Translated from the Russian by J. B. Sykes and W. H. Reid. 3rd edn. Pergamon Press, Oxford (1986)Google Scholar
  21. 21.
    Lekhnitskii, S.G.: Elasticity of an Anisotropic Body. Nauka, Moscow (1977). (in Russian) MATHGoogle Scholar
  22. 22.
    Maz’ja, V.G., Plamenevskii, B.A.: The coefficients in the asymptotics of solutions of elliptic boundary value problems with conical points. Math. Nachr. 76, 29 (1977). (in Russian) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Nazarov, S.A.: Elliptic boundary value problems with periodic coefficients in a cylinder. Izv. Akad. Nauk SSSR. Ser. Mat. 45(1), 101–112 (1981) (English transl. Math. USSR. Izvestija. 18(1), 89–98 (1982))Google Scholar
  24. 24.
    Nazarov, S.A.: Polynomial property of self-adjoint elliptic boundary value problems, and the algebraic description of their attributes. Uspekhi Mat. Nauk. 54(5(329)), 77–142 (1999). (in Russian); translation Russ. Math. Surv. 54(5), 9414 (1999)Google Scholar
  25. 25.
    Nazarov, S.A.: Properties of Spectra of Boundary Value Problems in Cylindrical and Quasicylindrical Domains, Sobolev Spaces in Mathematics, vol. 2 (Maz’ya, V. ed.). International Mathematical Series 9, pp. 261–309 (2008)Google Scholar
  26. 26.
    Nazarov, S.A.: Asymptotics of solutions to the spectral Steklov problem in a domain with a blunted peak. Mat. Zametki. 86, 4 (2009). (in Russian) (English transl.: Math. Notes. 84, 3–4 (2009))Google Scholar
  27. 27.
    Nazarov, S.A.: A gap in the continuous spectrum of an elastic waveguide. C. R. Mec. 336, 751–756 (2008)CrossRefMATHGoogle Scholar
  28. 28.
    Nazarov, S.A.L: The Rayleigh waves in an elastic half-layer with partly jammed periodic boundary. Dokl. Ross. Akad. Nauk. 423(1), 56–61 (2008). (in Russian) (English transl.: Dokl. Phys. 53(11), 600–604 (2008))Google Scholar
  29. 29.
    Nazarov, S.A.: Gap detection in the spectrum of an elastic periodic waveguide with a free surface. Zh. Vychisl. Mat. i Mat. Fiz. 49(2), 323–333 (2009). (in Russian) (English transl.: Comput. Math. Math. Phys. 49(2), 332–343 (2009).)Google Scholar
  30. 30.
    Nazarov, S.A.: Opening a gap in the essential spectrum of the elasticity problem in a periodic half-layer. Algebra Anal. 21(2), 166–202 (2009). (in Russian) (English transl.: St. Petersburg Math. J. 21, 2 (2009))Google Scholar
  31. 31.
    Nazarov, S.A.: Asymptotic Theory of Thin Plates and Rods. Reduction of Dimension and Integral Estimates. Nauchnaya Kniga, Novosibirsk (2002). (in Russian) Google Scholar
  32. 32.
    Nazarov, S.A., Plamenevskii, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries. Walter de Gruyter, Berlin (1994)CrossRefGoogle Scholar
  33. 33.
    Nazarov, S.A., Ruotsalainen, K., Taskinen, J.: Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps. Appl. Anal. 89(1), 109–124 (2010)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Nazarov, S.A., Taskinen, J.: Spectral gaps for periodic piezoelectric waveguides. Z. Angew. Math. Phys. 66, 3017–3047 (2015)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Visik, M.I., Ljusternik, L.A.: Regular degeneration and boundary layer of linear differential equations with small parameter. Am. Math. Soc. Transl. 20, 239–364 (1962)MathSciNetGoogle Scholar
  36. 36.
    Zhikov, V.: Gaps in the spectrum of some elliptic operators in divergent form with periodic coefficients. Algebra Anal. 16(5), 34–58 (2004). (in Russian) (English transl.: St. Petersburg Math. J. 16(5), 773–790) (2005).)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chebyshev LaboratorySt. Petersburg State UniversitySaint PetersburgRussia
  2. 2.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations