Skip to main content
Log in

Wave propagation in strain gradient poroelastic medium with microinertia: closed-form and finite element solutions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This article is about ultrasonic wave propagation in microstructured porous media. The classic Biot’s model is enriched using a strain gradient approach to be able to capture high-order effects when the wavelength approaches the characteristic size of the microstructure. In order to reproduce actual transmission/reflection experiments performed on poroelastic samples, and to validate the choice of the model, the computation of the time domain response is necessary, as it allows for a direct comparison with experimental results. For obtaining the time response, we use two strategies: on the one hand we compute the closed form solution by using the Laplace and Fourier transforms techniques; on the other hand we used a finite element method. The results are presented for a transmission/reflection test performed on a poroelastic sample immersed in water. The effects introduced by the strain gradient terms are visible in the time response and in agreement with experimental observations. The results can be exploited in characterization of mechanical properties of poroelastic media by enhancing the reliability of quantitative ultrasound techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Article  Google Scholar 

  2. Auffray, N., Le Quang, H., He, Q.C.: Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61(5), 1202–1223 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auffray, N., Dirrenberger, J., Rosi, G.: A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int. J. Solids Struct. 69–70, 195–206 (2015)

    Article  Google Scholar 

  4. Biot, M.A.: Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)

    Article  MathSciNet  Google Scholar 

  5. de Boer, R., Ehlers, W., Liu, Z.: One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Arch. Appl. Mech. 63(1), 59–72 (1993)

    Article  MATH  Google Scholar 

  6. dell’Isola, F., Guarascio, M., Hutter, K.: A variational approach for the deformation of a saturated porous solid: a second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)

    Article  MATH  Google Scholar 

  7. dell’Isola, F., Seppecher, P., Madeo, A.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dell’Isola, F., Madeo, A., Placidi, L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 92(1), 52–71 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fellah, Z.E.A., Chapelon, J.Y., Berger, S., Lauriks, W., Depollier, C.: Ultrasonic wave propagation in human cancellous bone: application of Biot theory. J. Acoust. Soc. Am. 116(1), 61–73 (2004)

    Article  Google Scholar 

  10. Giorgio, I., Andreaus,U., Scerrato, D., dell’Isola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. (2016)

  11. Gourgiotis, P.A., Georgiadis, H.G., Neocleous, I.: On the reflection of waves in half-spaces of microstructured materials governed by dipolar gradient elasticity. Wave Motion 50(3), 437–455 (2013)

    Article  MathSciNet  Google Scholar 

  12. Haïat, G., Sasso, M., Naili, S., Matsukawa, M.: Ultrasonic velocity dispersion in bovine cortical bone: an experimental study. J. Acoust. Soc. Am. 124(3), 1811–1821 (2008)

    Article  Google Scholar 

  13. Hakulinen, M.A., Day, J.S., Töyräs, J., Timonen, M., Kröger, H., Weinans, H., Kiviranta, I., Jurvelin, J.S.: Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2–6.7 MHz frequency range. Phys. Med. Biol. 50(8), 1629–1642 (2005)

    Article  Google Scholar 

  14. Hosokawa, A., Otani, T.: Acoustic anisotropy in bovine cancellous bone. J. Acoust. Soc. Am. 103(5), 2718–2722 (1998)

    Article  Google Scholar 

  15. Hughes, E.R., Leighton, T.G., Petley, G.W., White, P.R.: Ultrasonic propagation in cancellous bone: a new stratified model. Ultrasound Med. Biol. 25(5), 811–821 (1999)

    Article  Google Scholar 

  16. Hughes, E.R., Leighton, T.G., White, P.R., Petley, G.W.: Investigation of an anisotropic tortuosity in a biot model of ultrasonic propagation in cancellous bone. J. Acoust. Soc. Am. 121(1), 568–574 (2007)

    Article  Google Scholar 

  17. Laugier, P., Haïat, G.: Bone Quantitative Ultrasound. Springer, London (2010)

    Google Scholar 

  18. Madeo, A., dell’Isola, F., Ianiro, N., Sciarra, G.: A variational deduction of second gradient poroelasticity II: an application to the consolidation problem. J. Mech. Mater. Struct. 3(4), 607–625 (2008)

    Article  Google Scholar 

  19. Madeo, A., Placidi, L., Rosi, G.: Towards the design of metamaterials with enhanced damage sensitivity: second gradient porous materials. Res. Nondestruct. Eval. 25(2), 99–124 (2014)

    Article  Google Scholar 

  20. Nagatani, Y., Tachibana, R.O.: Multichannel instantaneous frequency analysis of ultrasound propagating in cancellous bone. J. Acoust. Soc. Am. 135(3), 1197–1206 (2014)

    Article  Google Scholar 

  21. Nguyen, V.H., Naili, S., Sansalone, V.: A closed-form solution for in vitro transient ultrasonic wave propagation in cancellous bone. Mech. Res. Commun. 37(4), 377–383 (2010)

    Article  MATH  Google Scholar 

  22. Nguyen, V.H., Naili, S., Sansalone, V.: Simulation of ultrasonic wave propagation in anisotropic cancellous bone immersed in fluid. Wave Motion 47(2), 117–129 (2010)

    Article  MATH  Google Scholar 

  23. Nguyen, V.H., Naili, S.: Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method. Int. J. Numer. Methods Biomed. Eng. 28(8), 861–876 (2012)

    Article  MathSciNet  Google Scholar 

  24. Nguyen, V.H., Naili, S.: Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: a spectral finite element study. Comput. Methods Biomech. Biomed. Eng. 16(9), 963–974 (2012)

    Article  Google Scholar 

  25. Nguyen, V.H., Naili, S.: Semi-analytical solution of transient plane waves transmitted through a transversely isotropic poroelastic plate immersed in fluid. J. Eng. Math. 86(1), 125–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nicholson, P.H.F., Lowet, G., Langton, C.M., Dequeker, J., Van der Perre, G.: A comparison of time domain and frequency-domain approaches to ultrasonic velocity measurement in trabecular bone. Phys. Med. Biol. 41(11), 2421–2435 (1996)

    Article  Google Scholar 

  27. Pakula, M., Padilla, F., Laugier, P., Kaczmarek, M.: Application of Biot’s theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties. J. Acoust. Soc. Am. 123(4), 2415–2423 (2008)

    Article  Google Scholar 

  28. Papargyri-Beskou, S., Polyzos, D., Beskos, D.E.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46(21), 3751–3759 (2009)

    Article  MATH  Google Scholar 

  29. Papargyri-Beskou, S., Tsinopoulos, S.V., Beskos, D.E.: Transient dynamic analysis of a fluid-saturated porous gradient elastic column. Acta Mech. 222(3–4), 351–362 (2011)

    Article  MATH  Google Scholar 

  30. Papargyri-Beskou, S., Polyzos, D., Beskos, D.E.: Wave propagation in 3-D poroelastic media including gradient effects. Arch. Appl. Mech. 82(10–11), 1569–1584 (2012)

    Article  MATH  Google Scholar 

  31. Placidi, L., dell’Isola, F., Ianiro, N., Sciarra, G.: Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A Solids 27(4), 582–606 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Riekkinen, O., Hakulinen, M.A., Timonen, M., Toyras, J., Jurvelin, J.S.: Influence of overlying soft tissues on trabecular bone acoustic measurement at various ultrasound frequencies. Ultrasound Med. Biol. 32(7), 1073–1083 (2006)

    Article  Google Scholar 

  33. Rosi, G., Madeo, A., Guyader, J.L.: Switch between fast and slow Biot compression waves induced by “second gradient microstructure” at material discontinuity surfaces in porous media. Int. J. Solids Struct. 50(10), 1721–1746 (2013)

    Article  Google Scholar 

  34. Rosi, G., Nguyen, V.H., Naili, S.: Reflection of acoustic wave at the interface of a fluid-loaded dipolargradient elastic half-space. Mech. Res. Commun. 56, 98–103 (2014)

    Article  Google Scholar 

  35. Rosi, G., Nguyen, V.H., Naili, S.: Surface waves at the interface between an inviscid fluid and a dipolar gradient solid. Wave Motion 53, 51–65 (2015)

    Article  MathSciNet  Google Scholar 

  36. Rosi, G., Auffray, N.: Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63, 120–134 (2016)

    Article  Google Scholar 

  37. Schanz, M.: Poroelastodynamics: linear models, analytical solutions and numerical methods. Appl. Mech. Rev. 62(3), 30803 (2009)

    Article  Google Scholar 

  38. Schanz, M., Antes, H.: Application of ’operational quadrature methods’ in time domain boundary element methods. Meccanica 32, 179–186 (1997)

    Article  MATH  Google Scholar 

  39. Sciarra, G., dell’Isola, F., Coussy, O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sciarra, G., dell’Isola, F., Ianiro, N., Madeo, A.: A variational deduction of second gradient poroelasticity I: general theory. J. Mech. Mater. Struct. 3(3), 507–526 (2008)

    Article  Google Scholar 

  41. Ta, D., Wang, W., Huang, K., Wang, Y., Le, L.H.: Analysis of frequency dependence of ultrasonic backscatter coefficient in cancellous bone. J. Acoust. Soc. Am. 124(6), 4083–4090 (2008)

    Article  Google Scholar 

  42. Vafaeian, B., Le, L.H., Tran, T.N.H.T., El-Rich, M., El-Bialy, T., Adeeb, S.: Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results. Ultrasonics 68, 17–28 (2016)

    Article  Google Scholar 

  43. Vardoulakis, I., Beskos, D.E.: Dynamic behavior of nearly saturated porous media. Mech. Mater. 5(1), 87–108 (1986)

    Article  Google Scholar 

  44. Waters, K.R., Hoffmeister, B.K.: Kramers–Kronig analysis of attenuation and dispersion in trabecular bone. J. Acoust. Soc. Am. 118(6), 3912–3920 (2005)

    Article  Google Scholar 

  45. Wear, K.A.: Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment. J. Acoust. Soc. Am. 106(6), 3659–3664 (1999)

    Article  Google Scholar 

  46. Wear, K.A.: Measurements of phase velocity and group velocity in human calcaneus. Ultrasound Med. Biol. 26(4), 641–646 (2000)

    Article  Google Scholar 

  47. Williams, J.L.: Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot’s theory. J. Acoust. Soc. Am. 91(2), 1106–1112 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rosi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosi, G., Scala, I., Nguyen, VH. et al. Wave propagation in strain gradient poroelastic medium with microinertia: closed-form and finite element solutions. Z. Angew. Math. Phys. 68, 58 (2017). https://doi.org/10.1007/s00033-017-0802-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0802-z

Mathematics Subject Classiffication

Keywords

Navigation