Allaire, G.: Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2, 203–222 (1989)
MathSciNet
MATH
Google Scholar
Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)
MathSciNet
Article
MATH
Google Scholar
Anguiano, M.: Darcy’s laws for non-stationary viscous fluid flow in a thin porous medium. Math. Methods Appl. Sci. (2016). doi:10.1002/mma.4204
Google Scholar
Bourgeat, A., ElAmri, H., Tapiero, R.: Existence d’une taille critique pour une fissure dans un milieu poreux. Second Colloque Franco Chilien de Mathematiques Appliquées, Cepadués Edts, Tolouse, pp. 67–80 (1991)
Bourgeat, A., Tapiero, R.: Homogenization in a perforated domain including a thin full interlayer. Int. Ser. Numer. Math. 114, 25–36 (1993)
MathSciNet
MATH
Google Scholar
Bourgeat, A., Marušic-Paloka, E., Mikelić, A.: Effective fluid flow in a porous medium containing a thin fissure. Asymptot. Anal. 11, 241–262 (1995)
MathSciNet
MATH
Google Scholar
Bourgeat, A., Mikelić, A.: Homogenization of a polymer flow through a porous medium. Nonlinear Anal. 26, 1221–1253 (1996)
MathSciNet
Article
MATH
Google Scholar
Ciarlet, P.G., Ledret, H., Nzwenga, R.: Modélisation de la jonction entre un corps élastique tridimensionnel et une plaque. C. R. Acad. Sci. Paris Ser. I(305), 55–58 (1987)
Google Scholar
Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)
MathSciNet
Article
MATH
Google Scholar
Panasenko, G.P.: Higher order asymptotics of solutions of problems on the contact of periodic structures. Math. U.S.S.R. Sbornik 38, 465–494 (1981)
Article
MATH
Google Scholar
Sanchez-Palencia, E.: Non-homogeneous media and vibration theory. In: Ehlers, J., Hepp, K., Kippenhahn, R., Weidenmüller, H.A., Zittartz, J. (eds.) Lecture Notes in Physics. Springer, Berlin/Heidelberg/New York (1980)
Tartar, L.: Incompressible fluid flow in a porous medium convergence of the homogenization process. In: Ehlers, J., Hepp, K., Kippenhahn, R., Weidenmüller, H.A., Zittartz, J. (eds.) Appendix to Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)
Temam, R.: Navier–Stokes equations and nonlinear functional analysis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1983)
Zhao, H., Yao, Z.: Effective models of the Navier–Stokes flow in porous media with a thin fissure. J. Math. Anal. Appl. 387, 542–555 (2012)
MathSciNet
Article
MATH
Google Scholar