Skip to main content
Log in

Stability of non-constant steady-state solutions for bipolar non-isentropic Euler–Maxwell equations with damping terms

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this article, we consider the periodic problem for bipolar non-isentropic Euler–Maxwell equations with damping terms in plasmas. By means of an induction argument on the order of the time-space derivatives of solutions in energy estimates, the global smooth solution with small amplitude was established close to a non-constant steady-state solution with asymptotic stability property. Furthermore, we obtain the global stability of solutions with exponential decay in time near the non-constant steady-states for bipolar non-isentropic Euler–Poisson equations. This phenomenon on the charge transport shows the essential relation and difference between the bipolar non-isentropic and the bipolar isentropic Euler–Maxwell/Poisson equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen F.: Introduction to Plasma Physics and Controlled Fusion, vol. 1. Plenum Press, New York (1984)

    Book  Google Scholar 

  2. Chen G.Q., Jerome J.W., Wang D.H.: Compressible Euler–Maxwell equations. Transp. Theory Stat. Phys. 29, 311–331 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Degond P., Deluzet F., Savelief D.: Numerical approximation of the Euler–Maxwell model in the quasineutral limit. J. Comput. Phys. 231, 1917–1946 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Duan R.J.: Global smooth flows for the compressible Euler–Maxwell system: the relaxation case. J. Hyperbolic Differ. Equ. 8, 375–413 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan R.J., Liu Q.Q., Zhu C.J.: The Cauchy problem on the compressible two-fluids Euler–Maxwell equations. SIAM J. Math. Anal. 44, 102–133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Evans L.C.: Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (1998)

    Google Scholar 

  7. Feng Y.H., Peng Y.J., Wang S.: Stability of non-constant equilibrium solutions for two-fluid Euler–Maxwell systems. Nonlinear Anal. Real World 26, 372–390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng Y.H., Wang S., Kawashima S.: Global existence and asymptotic decay of solutions to the non-isentropic Euler–Maxwell system. Math. Models Methods Appl. Sci. 24, 2851–2884 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, Y.H., Wang, S., Li, X.: Stability of non-constant steady-state solutions for non-isentropic Euler–Maxwell system with a temperature damping term. Math. Methods Appl. Sci. 39, 2514–2528 (2016)

  10. Germain, P., Masmoudi, N.: Global Existence for the Euler–Maxwell System. (2011). arXiv:1107.1595

  11. Guo, Y., Ionescu, A.D., Pausader, B.: Global Solutions of the Euler–Maxwell Two-Fluid System in 3D. (2013). arXiv:1303.1060

  12. Guo Y., Strauss W.: Stability of semiconductor states with insulating and contact boundary conditions. Arch. Ration. Mech. Anal. 179, 1–30 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kato T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klainerman S., Majda A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Majda A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984)

    Book  MATH  Google Scholar 

  16. Markowich P.A., Ringhofer C.A., Schmeiser C.: Semiconductor Equations. Springer, New York (1990)

    Book  MATH  Google Scholar 

  17. Matsumura A., Nishida T.: The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A 55, 337–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matsumura A., Nishida T.: The initial value problem for the equation of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  19. Peng Y.J., Wang S.: Convergence of compressible Euler–Maxwell equations to incompressible Euler equations. Commun. Part. Differ. Equ. 33, 349–376 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng Y.J., Wang S., Gu G.L.: Relaxation limit and global existence of smooth solutions of compressible Euler–Maxwell equations. SIAM J. Math. Anal. 43, 944–970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng Y.J.: Global existence and long-time behavior of smooth solutions of two-fluid Euler–Maxwell equations. Ann. Inst. Henri Poincare Anal. 29, 737–759 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Peng Y.J.: Stability of non-constant equilibrium solutions for Euler–Maxwell equations. J. Math. Pures Appl. 103, 39–67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rishbeth H., Garriott O.K.: Introduction to Ionospheric Physics. Academic Press, London (1969)

    Google Scholar 

  24. Ueda Y., Kawashima S.: Decay property of regularity-loss type for the Euler–Maxwell system. Methods Appl. Anal. 18, 245–267 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Ueda Y., Wang S., Kawashima S.: Dissipative structure of the regularity-loss type and time asymptotic decay of solutions for the Euler–Maxwell system. SIAM J. Math. Anal. 44, 2002–2017 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang S., Feng Y.H., Li X.: The asymptotic behavior of globally smooth solutions of bipolar non-isentropic compressible Euler–Maxwell system for plasma. SIAM J. Math. Anal. 44, 3429–3457 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang S., Feng Y.H., Li X.: The asymptotic behavior of globally smooth solutions of non-isentropic Euler–Maxwell equations for plasmas. Appl. Math. Comput 231, 299–306 (2014)

    MathSciNet  Google Scholar 

  28. Wen H.Y., Zhu C.J.: Global symmetric classical solutions of the full compressible Navier–Stokes equations with vacuum and large initial data. J. Math. Pures Appl. 102, 498–545 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu J.: Global classical solutions to the compressible Euler–Maxwell equations. SIAM J. Math. Anal. 43, 2688–2718 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yong W.A.: Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech. Anal. 172, 247–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Hong Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, S. & Feng, YH. Stability of non-constant steady-state solutions for bipolar non-isentropic Euler–Maxwell equations with damping terms. Z. Angew. Math. Phys. 67, 133 (2016). https://doi.org/10.1007/s00033-016-0728-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0728-x

Mathematics Subject Classification

Keywords

Navigation