Skip to main content
Log in

Continuum eigenmodes in some linear stellar models

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We apply parallel approaches in the study of continuous spectra to adiabatic stellar models. We seek continuum eigenmodes for the LAWE formulated as both finite difference and linear differential equations. In particular, we apply methods of Jacobi matrices and methods of subordinancy theory in these respective formulations. We find certain pressure-density conditions which admit positive-measured sets of continuous oscillation spectra under plausible conditions on density and pressure. We arrive at results of unbounded oscillations and computational or, perhaps, dynamic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aerts C., Christesen-Dalsgaard J., Kurtz D.W.: Asteroseismology. Springer, Berlin (2010)

    Book  Google Scholar 

  2. Beyer H.: Spectrum of adiabatic oscillations. J. Math. Phys. 36(9), 4792–4814 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beyer H.: Spectrum of radial adiabatic oscillations. J. Math. Phys. 36(9), 4815–4825 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beyer H.R., Schmidt B.G.: Newtonian stellar oscillations. Astron. Astrophys. 296, 722–726 (1995)

    Google Scholar 

  5. Birkhoff G., Rota G.-C.: Ordinary Differential Equations. Wiley, New York (1989)

    MATH  Google Scholar 

  6. Castor J.I.: On the calculation of linear, nonadiabatic pullsatsions of stellar models. APJ 166, 109–129 (1971)

    Article  Google Scholar 

  7. Christy R.F.: The Calculation of stellar pulsation. Rev. Mod. Phys. 36, 555–571 (1964)

    Article  Google Scholar 

  8. Coddington E.A., Levinson N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  9. Cox J.P.: Theory of Stellar Oscillation. Princeton University Press, Princeton (1980)

    Google Scholar 

  10. Damanik D., Simon B.: Jost functions and Jost solutions for Jacobi matrices, I A necessary and sufficient condition for Szegő asymptotics. Invent. Math. 165, 1–50 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Damanik D., Simon B.: Jost functions and Jost solutions for Jacobi matrices, II Decay and analyticity. IMRN 2006, 1–32 (2006)

    MATH  Google Scholar 

  12. Gilbert D.J., Pearson D.B.: On subordinancy and analysis of the spectrum of one-dimensional Schrödinger operators. J. Math. Anal. Appl. 128, 30–56 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henyey L.G., Forbes J.E., Gould N.L.: A new method for automatic computation of stellar evolution. Appl. J. 139, 306–317 (1964)

    MATH  Google Scholar 

  14. Kopal Z.: Radial oscillations of the limiting models of polyotropic gas sheres. Proc. Nat. Acad. Sci. 34(8), 377–384 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kippenhahn R., Weigert A.: Stellar Structure and Evolution. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  16. Killip R., Simon B.: Sum rules for Jacobi matrices and their applications to spectral theory. Ann. Math. 158, 253–321 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ledoux P., Walraven T.: Variable stars. Handbuch der Physik 51, 353–604 (1958)

    Article  Google Scholar 

  18. Pearson D.B.: Quantum Scattering and Spectral Theory. Academic Press, London (1988)

    MATH  Google Scholar 

  19. Reed M., Simon B.: Methods of Modern Mathematical Physics, vols. I and III. Academic Press, London (1980)

    MATH  Google Scholar 

  20. Simon B.: Bounded eigenfunctions and absolutely continuous spectra one-dimensional Schrödinger operators. Proc. AMS 124, 11 (1996)

    Article  Google Scholar 

  21. Simon B.: Szegő’s Theorem and Its Descendants: Spectral Theory for L 2 Pertubations of Orthogonal Polynomials. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  22. Smeyers P., Van Hoolst T.: Linear Isentropic Oscillations of Stars: Theoretical Foundations. Springer, Berlin (2010)

    Book  Google Scholar 

  23. Sterne T.E.: Modes of radial oscillation. MNRAS 97, 582S (1937)

    Article  MATH  Google Scholar 

  24. Stolz G.: Bounded solutions and absolute continuity of Sturm–Liouville operators. J. Math. Anal. Appl. 169, 210–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Teschl G.: Jocobi Operators and Completely Integrable Nonlinear Lattices. Mathematical Surveys and Monographs, vol. 72. AMS, Providence (2000)

    Google Scholar 

  26. Walter J.: Absolute continuity of the essential spectrum of \({-\frac{d^{2}}{dt^{2}}+q(t)}\) without monotony of q. Math. Z. 129, 83–94 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Winfield.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winfield, C.J. Continuum eigenmodes in some linear stellar models. Z. Angew. Math. Phys. 67, 130 (2016). https://doi.org/10.1007/s00033-016-0721-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0721-4

Mathematics Subject Classification

Navigation