Skip to main content
Log in

The Boussinesq–Mindlin problem for a non-homogeneous elastic halfspace

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Boussinesq’s problem for the indentation of an isotropic, homogeneous elastic halfspace by a rigid circular punch constitutes a seminal problem in the theory of contact mechanics as does Mindlin’s problem for the action of a concentrated force at the interior of an isotropic, homogeneous elastic halfspace. The combined action of the surface indentation in the presence of the interior loading is referred to as the Boussinesq–Mindlin problem, which has important applications in the area of geomechanics. The Boussinesq–Mindlin problem, which represents a self-stressing loading configuration, serves as a useful model for interpreting the mechanics of indentation of geologic media for purposes of estimating their bulk elasticity properties. In this paper, the analysis of the problem is extended to include an exponential variation in the linear elastic shear modulus of the halfspace region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boussinesq J.: Applications des Potentials à l’étude de l’équilibre et du mouvement des solides élastique. Gauthier-Villars, Paris (1885)

    MATH  Google Scholar 

  2. Harding J.W., Sneddon I.N.: The elastic stresses produced by the indentation of the plane of a semi-infinite elastic solid by a rigid punch. Proc. Camb. Philos. Soc. 41, 16–26 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hertz H.: On the contact of firm elastic bodies (in German: Ueber die Berührung fester elastischer Körper). J. Reine Angew. Math. 92, 156–171 (1882)

    MathSciNet  Google Scholar 

  4. Shtaerman, A.I.: Contact Problems of the Theory of Elasticity. North-Holland, Amsterdam (1949) (in Russian)

  5. Galin, L.A.: Contact problems in the classical theory of elasticity, In: Sneddon, I.N. (ed.) Engl. Trans. Tech. Rep. G16447, North Carolina State College, Raleigh

  6. Ufliand I.S.: The contact problem of the theory of elasticity for a die, circular in its plane, in the presence of adhesion. J. Appl. Math. Mech. 20, 578–587 (1956)

    Google Scholar 

  7. Lur’e A.I.: Three-Dimensional Problems of the Theory of Elasticity. Interscience, New York (1964)

    MATH  Google Scholar 

  8. Koronev, B.G.: Structures Resting on an Elastic Foundation, pp. 160–190. Pergamon Press, Oxford (1960) (Translated from Russian, edited by G. Herrmann)

  9. Ling F.F.: Surface Mechanics. pp. 173–191. Wiley, New York (1973)

  10. Goodman, L.E.: Development of the three-dimensional theory of Elasticity. In: R.D. Mindlin (ed.) Applied Mechanics, pp. 25–65. Pergamon Press, Oxford (1974)

  11. Selvadurai A.P.S.: Elastic Analysis of Soil–Foundation Interaction: Developments in Geotechnical Engineering, vol. 17. Elsevier Scientific, Amsterdam (1979)

    Google Scholar 

  12. Selvadurai A.P.S.: The axial loading of a rigid circular anchor plate embedded in an elastic halfspace. Int. J. Numer. Anal. Meth. Geomech. 17, 343–353 (1993)

    Article  MATH  Google Scholar 

  13. Selvadurai, A.P.S.: On the modelling of certain fundamental elastostatic contact problems in geomechanics, chap. 13. In: Zaman, M., Gioda, G., Booker, J.R. Modelling in Geomechanics, pp. 301–328. Wiley, New York (2000)

  14. Selvadurai A.P.S.: The analytical method in geomechanics. Appl. Mech. Rev. 60, 87–106 (2007)

    Article  Google Scholar 

  15. Gladwell G.M.L.: Contact Problems in the Classical Theory of Elasticity. Sijthoff and Nordhoff, Alphen aan den Rijn (1980)

    Book  MATH  Google Scholar 

  16. Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  17. Curnier, A. (ed.): Proceedings of the International Symposium on Contact Mechanics. Presses Polytech. et Univ., Romandes, Lausanne (1992)

  18. Selvadurai, A.P.S., Atluri, S.N. (eds.): Contact Mechanics in the Engineering Sciences. Material Characterization, Micromechanical Processes and Modelling, Geosciences. Tech Science Press, Atlanta (2010)

  19. Selvadurai A.P.S.: The load-deflexion characteristics of a deep rigid anchor in an elastic medium. Géotechnique 26, 603–612 (1976)

    Article  Google Scholar 

  20. Selvadurai, A.P.S., Nicholas, T.J.: A theoretical assessment of the screw plate test. In: Wittke, W. (ed.) 3rd International Conference on Numerical Methods in Geomechanics, vol. 3, pp. 1245–1252, Aachen. A.A. Balkema, The Netherlands (1979)

  21. Selvadurai A.P.S., Bauer G.E., Nicholas T.J.: Screw plate testing of a soft clay. Can. Geotech. J. 17, 465–472 (1980)

    Article  Google Scholar 

  22. Selvadurai A.P.S.: On the estimation of the deformability characteristics of an isotropic elastic soil medium by means of a vane test. Int. J. Numer. Anal. Methods Geomech. 3, 231–243 (1979)

    Article  MATH  Google Scholar 

  23. Jaeger C.: Rock Mechanics and Engineering. Cambridge University Press, Cambridge (1972)

    Google Scholar 

  24. Bell, F.G. (ed.): Ground Engineer’s Handbook. Butterworths, London (1986)

  25. Brown, E.T. (ed.): Rock Characterization, Testing and Monitoring. Pergamon Press, Oxford (1981)

  26. Zienkiewicz O.C., Stagg K.: Cable method of in situ rock testing. Int. J. Rock. Mech. Min. Sci. 24, 273–300 (1967)

    Article  Google Scholar 

  27. Selvadurai A.P.S.: The interaction between a rigid circular punch on an elastic halfspace and a Mindlin force. Mech. Res. Commun. 5, 57–64 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Selvadurai A.P.S.: The displacement of a rigid circular foundation anchored to an isotropic elastic halfspace. Géotechnique 29, 195–202 (1979)

    Article  Google Scholar 

  29. Selvadurai A.P.S.: The interaction between a uniformly loaded circular plate and an isotropic elastic halfspace: a variational approach. J. Struct. Mech. 7, 231–246 (1979)

    Article  Google Scholar 

  30. Selvadurai A.P.S.: A contact problem for a Reissner plate and an isotropic elastic halfspace. J. Theor. Appl. Mech. 3, 181–196 (1984)

    MATH  Google Scholar 

  31. Selvadurai A.P.S.: Elastic contact between a flexible circular plate and a transversely isotropic elastic halfspace. Int. J. Solids Struct. 16, 167–176 (1980)

    Article  MATH  Google Scholar 

  32. Selvadurai A.P.S.: Some results concerning the viscoelastic relaxation of prestress in a near surface rock anchor. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16, 309–317 (1979)

    Article  Google Scholar 

  33. Sneddon I.N.: The relationship between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  34. Selvadurai A.P.S.: Betti’s reciprocal relationships for the displacements of an elastic infinite space bounded internally by a rigid inclusion. J. Struct. Mech. 9, 199–210 (1981)

    Article  Google Scholar 

  35. Selvadurai A.P.S.: On the displacements of an elastic halfspace containing a rigid inhomogeneity. Int. J. Geomech. 1, 149–174 (2001)

    Article  Google Scholar 

  36. Selvadurai A.P.S.: On the interaction between an elastically embedded rigid inhomogeneity and a laterally placed concentrated force. J. Appl. Math. Phys. (ZAMP) 33, 241–250 (1982)

    Article  MATH  Google Scholar 

  37. Selvadurai A.P.S.: The additional settlement of a rigid circular foundation on an isotropic elastic halfspace due to multiple distributed external loads. Géotechnique 32, 1–7 (1982)

    Article  Google Scholar 

  38. Selvadurai A.P.S.: An application of Betti’s reciprocal theorem for the analysis of an inclusion problem. Eng. Anal. Bound. Elem. 24, 759–765 (2000)

    Article  MATH  Google Scholar 

  39. Selvadurai A.P.S., Dumont N.A.: Mindlin’s problem for a halfspace indented by a flexible plate. J. Elast. 105, 253–269 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mossakovskii V.I.: Pressure of a circular punch on an elastic halfspace whose modulus of elasticity is an exponential function. Prikl. Mat. Mekh. 22, 168–171 (1958)

    MathSciNet  Google Scholar 

  41. Kassir M.K., Chuapresert M.F.: A rigid punch in contact with a non-homogeneous elastic solid. J. Appl. Mech. 41, 1019–1024 (1974)

    Article  MATH  Google Scholar 

  42. Muravskii G.: Time-harmonic problem for a non-homogeneous half-space with exponentially varying shear modulus. Int. J. Solids Struct. 34, 3119–3139 (1997)

    Article  MATH  Google Scholar 

  43. Gibson R.E.: Some results concerning displacements and stresses in a non-homogeneous elastic halfspace. Géotechnique 17, 58–67 (1967)

    Article  Google Scholar 

  44. Awojobi A.O., Gibson R.E.: Plane strain and axially symmetric problems of a linearly non-homogeneous elastic halfspace. Q. J. Mech. Appl. Math. 26, 285–302 (1973)

    Article  MATH  Google Scholar 

  45. Rajapakse R.K.N.D., Selvadurai A.P.S.: Response of circular footings and anchor plates in non-homogeneous elastic soils. Int. J. Numer. Anal. Methods Geomech. 15, 457–470 (1991)

    Article  Google Scholar 

  46. Selvadurai A.P.S., Singh B.M., Vrbik J.: A Reissner–Sagoci problem for a non-homogeneous elastic solid. J. Elast. 16, 383–391 (1986)

    Article  MATH  Google Scholar 

  47. Selvadurai A.P.S.: The settlement of a rigid circular foundation resting on a half-space exhibiting a near surface elastic non-homogeneity. Int. J. Numer. Anal. Methods Geomech. 20, 351–364 (1996)

    Article  MATH  Google Scholar 

  48. Selvadurai, A.P.S., Lan, Q.: A disc inclusion at a non-homogeneous elastic interface. Mech. Res. Commun. 24, 483–488 (1997)

  49. Selvadurai A.P.S., Lan Q.: Axisymmetric mixed boundary value problems for an elastic halfspace with a periodic nonhomogeneity. Int. J. Solids Struct. 35, 1813–1826 (1998)

    Article  MATH  Google Scholar 

  50. Selvadurai A.P.S.: The penny-shaped crack at a bonded plate with a localized elastic non-homogeneity. Eur. J. Mech. A Solids 19, 525–534 (2000)

    Article  MATH  Google Scholar 

  51. Borowicka H.: Die Druckausbreitung im halbraum bei linear zunehmendem Elastizitäts modul. Ing. Arch. 14, 75–82 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  52. Gorbunov-Posadov, M.I.: Design of beams and plates on an elastic halfspace. PMM 4, 61–80 (1940) (in Russian)

  53. Ohde, J.: Zur Theorie der Druckverteilung im Baugrund, vol. 20, pp. 451–459. Bauingenieur (1939)

  54. Aleynikov, S.: Spatial Contact Problems in Geotechnics: Boundary Element Methods. Springer, Berlin (2011)

  55. Ter-Mkrtch’ian L.N.: Some problems in the theory of elasticity of non homogeneous elastic media. PMM 25, 1120–1225 (1961)

    Google Scholar 

  56. Giannakopoulos A.E., Suresh S.: Indentation of solids with gradients in elastic properties. Part I: point force. J. Solids Struct. 34, 2357–2392 (1997)

    Article  MATH  Google Scholar 

  57. Westergaard H.M.: Theory of Elasticity and Plasticity. Harvard University Press, Cambridge (1952)

    Book  MATH  Google Scholar 

  58. Selvadurai, A.P.S.: Partial Differential Equations in Mechanics, vol. 2. The Biharmonic Equation, Poisson’s Equation. Springer, Berlin (2000)

  59. Baker C.T.H.: The Numerical Treatment of Integral Equations. Clarendon Press, Oxford (1977)

    MATH  Google Scholar 

  60. Atkinson K.E.: The Numerical Solution of Integral Equations of the Second-Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  61. Katebi A., Selvadurai A.P.S.: A frictionless contact problem for a flexible circular plate and an incompressible non-homogeneous elastic halfspace. Int. J. Mech. Sci. 90, 239–245 (2015)

    Article  Google Scholar 

  62. Selvadurai A.P.S., Katebi A.: An adhesive contact problem for an incompressible non-homogeneous elastic halfspace. Acta Mech. 226, 249–265 (2015). doi:10.1007/s00707-014-1171-8

    Article  MathSciNet  MATH  Google Scholar 

  63. Selvadurai A.P.S., Katebi A.: Mindlin’s problem for an incompressible elastic halfspace with an exponential variation in the linear elastic shear modulus. Int. J. Eng. Sci. 65, 9–21 (2013). doi:10.1016/j.ijengsci.2013.01.002

    Article  MathSciNet  Google Scholar 

  64. Katebi A., Rahimian M., Khojasteh A., Pak R.Y.S.: Axisymmetric interaction of a rigid disc with a transversely isotropic half-space. Int. J. Numer. Anal. Methods Geomech. 34, 1211–1236 (2010)

    MATH  Google Scholar 

  65. Katebi A., Selvadurai A.P.S.: Undrained behaviour of a non-homogeneous elastic medium: the influence of variations in the linear elastic shear modulus. Géotechnique 63, 1159–1169 (2013). doi:10.1680/geot.12.P.164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. S. Selvadurai.

Additional information

Dedicated to Professor J. M. Hill on the occasion of his 70th Birthday.

This article is part of the topical collection “James Hill” guest edited by Scott McCue and Natalie Thamwattana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvadurai, A.P.S., Katebi, A. The Boussinesq–Mindlin problem for a non-homogeneous elastic halfspace. Z. Angew. Math. Phys. 67, 68 (2016). https://doi.org/10.1007/s00033-016-0661-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0661-z

Mathematics Subject Classification

Keywords

Navigation