Skip to main content
Log in

Large deformations of a new class of incompressible elastic bodies

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The consequences of the constraint of incompressibility is studied for a new class of constitutive relation for elastic bodies, for which the left Cauchy–Green tensor is a function of the Cauchy stress tensor. The requirement of incompressibility is imposed directly in the constitutive relation, and it is not necessary to assume a priori that the stress tensor should be divided into two parts, a constraint stress and a constitutively specified part, as in the classical theory of nonlinear elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bustamante R., Rajagopal K.R.: Solutions of some boundary value problems for a new class of elastic bodies undergoing small strains. Comparison with the predictions of the classical theory of linearized elasticity: Part I Problems with cylindrical symmetry. Acta Mech. 226, 1815–1838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bustamante R., Rajagopal K.R.: Solutions of some boundary value problems for a new class of elastic bodies. Comparison with the classical theory of linearized elasticity: Part II A problem with spherical symmetry. Acta Mech. 226, 1807–1813 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bustamante, R., Rajagopal, K.R.: On the consequences of the constraint of incompressibility with regard to a new class of constitutive relations for elastic bodies: small displacement gradient approximation. Continuum Mech. Therm. 28, 293–303 (2016)

  4. Bustamante, R., Rajagopal, K.R.: A note on some new classes of constitutive relations for elastic bodies. IMA J. Appl. Math. 80, 1287–1299 (2015)

  5. Bustamante, R., Rajagopal, K.R.: Study of a new class of non-linear inextensible elastic bodies. Z. Angew. Math. Phys. 66, 3663–3677 (2015)

  6. Bustamante, R.: Solutions of some boundary value problems for a class of constitutive relation for nonlinear elastic bodies that is not Green elastic (In revision)

  7. Casey J.: A treatment of internally constrained materials. J. Appl. Mech. 62, 542–543 (1995)

    Article  MATH  Google Scholar 

  8. Chadwick P.: Continuum Mechanics: Concise Theory and Problems. Dover Publications Inc, Mineola (1999)

    Google Scholar 

  9. Destrade M., Murphy J.G., Saccomandi G.: Simple shear is not so simple. Int. J. Nonlinear Mech. 47, 210–214 (2012)

    Article  Google Scholar 

  10. Grasley, Z., El-Helou, R., D’Ambrosia, M., Mokarem, D., Moen, C., Rajagopal, K.: Model of infinitesimal nonlinear elastic response of concrete subjected to uniaxial compression. J. Eng. Mech. 141, 04015008 (2015)

  11. John F.: Partial differential equations. Springer, New York (1991)

    Google Scholar 

  12. Marzano S.: An interpretation of Baker-Ericksen inequalities in uniaxial deformation and stress. Meccanica 18, 233–235 (1983)

    Article  MATH  Google Scholar 

  13. Noll W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rat. Mech. Anal. 2, 197–226 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rajagopal K.R.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rajagopal K.R, Srinivasa A.R.: On the nature of constraints for continue undergoing dissipative processes. Proc. R. Soc. A 461, 2785–2795 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rajagopal K.R, Saccomandi G.: On internal constraints in continuum mechanics. Diff. Equ. Nonlinear Mech. 2006(18572), 1–12 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rajagopal K.R.: The elasticity of elasticity. Z. Angew. Math. Phys. 58, 309–317 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rajagopal K.R, Srinivasa A.R.: On the response of non-dissipative solids. Proc. R. Soc. A 463, 357–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rajagopal K.R, Srinivasa A.R.: On a class of non-dissipative solids that are not hyperelastic. Proc. R. Soc. A 465, 493–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rajagopal K.R.: Conspectus of concepts of elasticity. Math. Mech. Solids. 16, 536–562 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rajagopal K.R., Saravanan U.: Spherical inflation of a class of compressible elastic bodies. Int. J. Nonlinear Mech. 46, 1167–1176 (2011)

    Article  Google Scholar 

  22. Rajagopal K.R., Saravanan U.: Extension, inflation and circumferential shearing of an annular cylinder for a class of compressible elastic bodies. Math. Mech. Solids 17, 473–499 (2012)

    Article  MathSciNet  Google Scholar 

  23. Rajagopal K.R: A note on material symmetry for bodies defined by implicit constitutive relations. Mech. Res. Commun. 64, 38–41 (2015)

    Article  Google Scholar 

  24. Saito T., Furuta T., Hwang J.H., Kuramoto S., Nishino K., Susuki N., Chen R., Yamada A., Ito K., Seno T., Nonaka Y., Ikehata H., Nagasako N., Iwamoto C., Ikuhara Y., Sakuma T.: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003)

    Article  Google Scholar 

  25. Talling R.J., Dashwood R.J., Jackson M., Kuramoto S., Dye D.: Determination of C 11C 12 in Ti-36Nb-2Ta-3Zr-0.3O (xt.%) (Gum metal). Scr. Mater. 59, 669–672 (2008)

    Article  Google Scholar 

  26. Truesdell, C.A., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1. Springer, Berlin (1960)

  27. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Antman, S.S. (ed.) 3rd edn. Springer, Berlin (2004)

  28. Withey E., Jim M., Minor A., Kuramoto S., Chrzan D.C., Morris J.W. Jr: The deformation of ‘Gum Metal’ in nanoindentation. Mater. Sci. Eng. A 493, 26–32 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bustamante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante, R., Orellana, O., Meneses, R. et al. Large deformations of a new class of incompressible elastic bodies. Z. Angew. Math. Phys. 67, 47 (2016). https://doi.org/10.1007/s00033-016-0638-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0638-y

Mathematics Subject Classification

Keywords

Navigation