Skip to main content

Advertisement

Log in

Numerical simulations of a reduced model for blood coagulation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1–14, 2012), Pavlova et al. (Theor Biol 380:367–379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand M., Rajagopal K.R.: A mathematical model to describe the change in the constitutive character of blood due to platelet activation. C. R. Mec. 330(8), 557–562 (2002)

    Article  MATH  Google Scholar 

  2. Anand M., Rajagopal K., Rajagopal K.R.: A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5(3–4), 183–218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anand M., Rajagopal K.R.: A shear-thinning viscoelastic fluid model for describing the flow of blood. Int. J. Cardiovasc. Med. Sci. 4(2), 59–68 (2004)

    Google Scholar 

  4. Anand M., Rajagopal K., Rajagopal K.R.: A model for the formation and lysis of blood clots. Pathophysiol. Haemost. Thromb. 34(2–3), 109–120 (2005)

    Google Scholar 

  5. Anand M., Rajagopal K., Rajagopal K.R.: A viscoelastic fluid model for describing the mechanics of a coarse ligated plasma clot. Theor. Comput. Fluid Dyn. 20(4), 239–250 (2006)

    Article  MATH  Google Scholar 

  6. Anand M., Rajagopal K., Rajagopal K.R.: A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J. Theor. Biol. 253, 725–738 (2008)

    Article  Google Scholar 

  7. Antovic J.P., Blombäck M.: Essential Guide to Blood Coagulation. Blackwell Publishing Ltd, Oxford (2010)

    Google Scholar 

  8. Aydin S.H., Çiftçi C.: The finite element method solution of variable diffusion coefficient convection-diffusion equations. AIP Conf. Proc. 1470, 228–231 (2012)

    Article  Google Scholar 

  9. Baumgartner H.R.: The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc. Res. 5, 167–179 (1973)

    Article  Google Scholar 

  10. Bertram J.P., Williams C.A., Lavik E.B.: Synthetic platelets: nanotechnology to halt bleeding. Sci. Transl. Med. 1(11), 11–22 (2009)

    Article  Google Scholar 

  11. Borsi, I., Farina, A., Fasano, A., Rajagopal, K.R.: Modelling the combined chemical and mechanical action for blood clotting. In: Nonlinear Phenomena with Energy Dissipation, Gakuto Internat Ser Math Sci Appl, Gakkotosho, Tokyo, vol. 29, pp. 53–72 (2008)

  12. Bruaset, A.M., Tveito, A., (eds.): Numerical solution of partial differential equations on parallel computers. In: Lecture Notes in Computational Science and Engineering, vol. 51 (2006). ISBN 978-3-540-29076-6.

  13. Butenas S., van’t Veer C., Mann K.G.: “Normal” thrombin generation. Blood 94(7), 2169–2178 (1999)

    Google Scholar 

  14. Caldwell S.H., Hoffman M., Lisman T., Macik B.G., Northup P.G., Reddy K.R., Tripodi A., Sanyal A.J.: Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology 44(4), 1039–1046 (2006)

    Article  Google Scholar 

  15. Chien S., Usami S., Dellenback R.J., Gregersen M.I.: Shear-dependent deformation of erythrocytes in rheology of human blood. Am. J. Physiol. 219, 136–142 (1970)

    Google Scholar 

  16. Codina, R.: Finite element approximation of the convection–diffusion equation: Subgrid-scale spaces, local instabilities and anisotropic space-time discretizations. In: BAIL 2010—Boundary and Interior Layers, Computational and Asymptotic Methods Lecture Notes in Computational Science and Engineering, vol. 81, pp. 85–97 (2011)

  17. Cohen A.T., Agnelli G., Anderson F.A., Arcelus J.I., Bergqvist D., Brecht J.G., Greer I.A., Heit J.A., Hutchinson J.L., Kakkar A.K., Mottier D., Oger E., Samama M.-M., Spannagl M.: Venous thromboembolism (VTE) in Europe—the number of VTE events and associated morbidity and mortality. Thromb. Haemost. 98, 756–764 (2007)

    Google Scholar 

  18. Dahlbäck B.: Blood coagulation and its regulation by anticoagulant pathways: genetic pathogenesis of bleeding and thrombotic diseases. J. Intern. Med. 257, 209–223 (2005)

    Article  Google Scholar 

  19. Fasano A., Pavlova J., Sequeira A.: A synthetic model for blood coagulation including blood slip at vessel wall. Clin. Hemorheol. Microcirc. 51, 1–14 (2012)

    Google Scholar 

  20. Fasano, A., Santos, R., Sequeira, A.: Blood coagulation: a puzzle for biologists, a maze for mathematicians. In: Ambrosi D., Quarteroni A., G. Rozza (eds.) Modelling Physiological Flows, Chapt. 3, pp. 44–77. Springer, Milan (2011). doi:10.1007/978-88-470-1935-53

  21. Fogelson A.L., Keener J.P.: Toward an understanding of fibrin branching structure. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 81(5–1), 051922 (2010)

    Article  MathSciNet  Google Scholar 

  22. Fogelson A.L., Guy R.D.: Immersed-boundary-type models of intravascular platelet aggregation. Comput. Appl. Mech. Eng. 197, 2087–2104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Furie B., Furie B.C.: Thrombus formation in vivo. J. Clin. Invest 115(12), 3335–3362 (2005)

    Article  Google Scholar 

  24. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012). 65Y15. http://www.freefem.org

  25. Hundsdorfer, W.H.: Numerical solution of advection–diffusion–reaction equations. In: Lecture Notes, Thomas Stieltjes Institute (1996)

  26. Hershey D., Cho S.J.: Blood flow in rigid tubes: thickness and slip velocity of plasma film at the wall. J. Appl. Physiol. 21, 27–32 (1966)

    Google Scholar 

  27. Jahnke T., Lubich C.: Error bounds for exponential operator splittings. BIT 40(4), 735–744 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. John V., Novo J.: Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations. SIAM J. Numer. Anal. 49(3), 1149–1176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kernighan, B.W., Ritchie, D.M.: The C programming Language, 2nd edn. Prentice-Hall PTR (1988). ISBN 0-13-110362-8

  30. McLachlan R.I., Quispel G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. LaCroix D.E., Anand M.: A model for the formation, growth, and dissolution of clots in vitro. Effect of the intrinsic pathway on antithrombin III deficiency and protein C deficiency. Int. J. Eng. Sci. Appl. Math. 3(1–4), 93–105 (2011)

    Article  MathSciNet  Google Scholar 

  32. Larson, M.G., Bengzon, F.: The finite element method: theory, implementation, and practice. In: Texts in Computational Science and Engineering, vol. 10. Springer (2010). ISBN 978-3-642-33287-6

  33. Leiderman K., Fogelson A.L.: Grow with the flow: a spatial–temporal model of platelet deposition and blood coagulation under flow. Math. Med. Biol. 28, 47–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mannucci P.M.: Platelet/von Willebrand factor inhibitors to the rescue of ischemic stroke. Arterioscler. Thromb. Vasc. Biol. 30, 1882–1884 (2010)

    Article  Google Scholar 

  35. Orfeo T., Gissel M., Butenas S., Undas A., Brummel-Ziedins K.E., Mann K.G.: Anticoagulants and the propagation phase of thrombin generation. PLoS One 6(11), e27852 (2011)

    Article  Google Scholar 

  36. Ovanesov M.V., Ananyeva N.M., Panteleev M.A., Ataullakhanov F.I., Saenko E.L.: Initiation and propagation of coagulation from tissue factor-bearing cell monolayers to plasma: initiator cells do not regulate spatial growth rate. J. Thromb. Haemost. 3, 321–331 (2005)

    Article  Google Scholar 

  37. Panteleev M.A., Ananyeva N.M., Greko N.J., Ataullakhanov F.I., Saenko E.L.: Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J. Thromb. Haemost. 3, 2545–2553 (2005)

    Article  Google Scholar 

  38. Papaioannou T.G., Stefanadis C.: Vascular wall shear stress: basic principles and methods. Hellenic J. Cardiol. 46, 9–15 (2005)

    Google Scholar 

  39. Pavlova J., Fasano A., Janela J., Sequeira A.: Numerical validation of a synthetic cell-based model of blood coagulation. J. Theor. Biol. 380, 367–379 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pavlova, J.: Mathematical modelling and numerical simulations of blood coagulation. In: Ph.D. Thesis, IST, University of Lisbon (2014)

  41. Pivkin I.V., Richardson P.D., Karniadakis G.: Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proc. Natl. Acad. Sci. 103(46), 17164–17169 (2006)

    Article  Google Scholar 

  42. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York (2007). ISBN 978-0-521-88068-8

  43. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New-York (2004). ISBN 007-123265-6.

  44. Rajagopal K., Srinivasa A.: A thermodynamic framework for rate type fluid models. J. Non-Newt. Fluid Mech. 88, 207–228 (2000)

    Article  MATH  Google Scholar 

  45. Robertson, A.M., Sequeira, A., Kameneva, M.V.: Hemorheology. In: Galdi, G.P., Rannacher R., Robertson A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars), vol. 37, pp. 63–120. Birkhäuser Verlag (2008)

  46. Segal I.A.: Finite Element methods for the Incompressible Navier–Stokes Equations. Delft University of Technology, Delft (2012)

    Google Scholar 

  47. Shen F., Kastrup C.J., Liu Y., Ismagilov R.F.: Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate. Arterioscler. Thromb. Vasc. Biol. 28, 2035–2041 (2008)

    Article  Google Scholar 

  48. Shibeko A.M., Karamzin S.S., Butylin A.A., Panteleev M.A., Ataullakhanov F.I.: The review of contemporary ideas about the influence of flow rate on blood clotting. Biochem. Suppl. Ser. A Membr. Cell Biol. 4(3), 388–394 (2009)

    Google Scholar 

  49. Shibeko A.M., Lobanova E.S., Panteleev M.A., Ataullakhanov F.I.: Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa. BMC Syst. Biol. 4(5), 1–12 (2010)

    Google Scholar 

  50. Sportisse B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161, 140–168 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Verbiest, B.C.H.: Thrombus formation in aneurysms: an experimental study. In: Master Thesis, Eindhoven University of Technology (2008)

  52. Thurston G.B.: Viscoelasticity of human blood. Biophys. J. 12, 1205–1217 (1972)

    Article  Google Scholar 

  53. Weller F.F.: A free boundary problem modeling thrombus growth: Model development and numerical simulation using the level set method. J. Math. Biol. 61(6), 805–818 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yeleswarapu K., Kameneva M., Rajagopal K., Antaki J.: The flow of blood in tubes: theory and experiment. Mech. Res. Commun. 3(25), 257–262 (1998)

    Article  MATH  Google Scholar 

  55. Zhao S., Ovadia J., Liu X., Zhang Y.-T., Nie Q.: Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems. J. Comput. Phys. 230(15), 5996–6009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adélia Sequeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, J., Fasano, A. & Sequeira, A. Numerical simulations of a reduced model for blood coagulation. Z. Angew. Math. Phys. 67, 28 (2016). https://doi.org/10.1007/s00033-015-0610-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-015-0610-2

Mathematics Subject Classification

Keywords

Navigation