Abstract
In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1–14, 2012), Pavlova et al. (Theor Biol 380:367–379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.
Similar content being viewed by others
References
Anand M., Rajagopal K.R.: A mathematical model to describe the change in the constitutive character of blood due to platelet activation. C. R. Mec. 330(8), 557–562 (2002)
Anand M., Rajagopal K., Rajagopal K.R.: A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5(3–4), 183–218 (2003)
Anand M., Rajagopal K.R.: A shear-thinning viscoelastic fluid model for describing the flow of blood. Int. J. Cardiovasc. Med. Sci. 4(2), 59–68 (2004)
Anand M., Rajagopal K., Rajagopal K.R.: A model for the formation and lysis of blood clots. Pathophysiol. Haemost. Thromb. 34(2–3), 109–120 (2005)
Anand M., Rajagopal K., Rajagopal K.R.: A viscoelastic fluid model for describing the mechanics of a coarse ligated plasma clot. Theor. Comput. Fluid Dyn. 20(4), 239–250 (2006)
Anand M., Rajagopal K., Rajagopal K.R.: A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J. Theor. Biol. 253, 725–738 (2008)
Antovic J.P., Blombäck M.: Essential Guide to Blood Coagulation. Blackwell Publishing Ltd, Oxford (2010)
Aydin S.H., Çiftçi C.: The finite element method solution of variable diffusion coefficient convection-diffusion equations. AIP Conf. Proc. 1470, 228–231 (2012)
Baumgartner H.R.: The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc. Res. 5, 167–179 (1973)
Bertram J.P., Williams C.A., Lavik E.B.: Synthetic platelets: nanotechnology to halt bleeding. Sci. Transl. Med. 1(11), 11–22 (2009)
Borsi, I., Farina, A., Fasano, A., Rajagopal, K.R.: Modelling the combined chemical and mechanical action for blood clotting. In: Nonlinear Phenomena with Energy Dissipation, Gakuto Internat Ser Math Sci Appl, Gakkotosho, Tokyo, vol. 29, pp. 53–72 (2008)
Bruaset, A.M., Tveito, A., (eds.): Numerical solution of partial differential equations on parallel computers. In: Lecture Notes in Computational Science and Engineering, vol. 51 (2006). ISBN 978-3-540-29076-6.
Butenas S., van’t Veer C., Mann K.G.: “Normal” thrombin generation. Blood 94(7), 2169–2178 (1999)
Caldwell S.H., Hoffman M., Lisman T., Macik B.G., Northup P.G., Reddy K.R., Tripodi A., Sanyal A.J.: Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology 44(4), 1039–1046 (2006)
Chien S., Usami S., Dellenback R.J., Gregersen M.I.: Shear-dependent deformation of erythrocytes in rheology of human blood. Am. J. Physiol. 219, 136–142 (1970)
Codina, R.: Finite element approximation of the convection–diffusion equation: Subgrid-scale spaces, local instabilities and anisotropic space-time discretizations. In: BAIL 2010—Boundary and Interior Layers, Computational and Asymptotic Methods Lecture Notes in Computational Science and Engineering, vol. 81, pp. 85–97 (2011)
Cohen A.T., Agnelli G., Anderson F.A., Arcelus J.I., Bergqvist D., Brecht J.G., Greer I.A., Heit J.A., Hutchinson J.L., Kakkar A.K., Mottier D., Oger E., Samama M.-M., Spannagl M.: Venous thromboembolism (VTE) in Europe—the number of VTE events and associated morbidity and mortality. Thromb. Haemost. 98, 756–764 (2007)
Dahlbäck B.: Blood coagulation and its regulation by anticoagulant pathways: genetic pathogenesis of bleeding and thrombotic diseases. J. Intern. Med. 257, 209–223 (2005)
Fasano A., Pavlova J., Sequeira A.: A synthetic model for blood coagulation including blood slip at vessel wall. Clin. Hemorheol. Microcirc. 51, 1–14 (2012)
Fasano, A., Santos, R., Sequeira, A.: Blood coagulation: a puzzle for biologists, a maze for mathematicians. In: Ambrosi D., Quarteroni A., G. Rozza (eds.) Modelling Physiological Flows, Chapt. 3, pp. 44–77. Springer, Milan (2011). doi:10.1007/978-88-470-1935-53
Fogelson A.L., Keener J.P.: Toward an understanding of fibrin branching structure. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 81(5–1), 051922 (2010)
Fogelson A.L., Guy R.D.: Immersed-boundary-type models of intravascular platelet aggregation. Comput. Appl. Mech. Eng. 197, 2087–2104 (2008)
Furie B., Furie B.C.: Thrombus formation in vivo. J. Clin. Invest 115(12), 3335–3362 (2005)
Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012). 65Y15. http://www.freefem.org
Hundsdorfer, W.H.: Numerical solution of advection–diffusion–reaction equations. In: Lecture Notes, Thomas Stieltjes Institute (1996)
Hershey D., Cho S.J.: Blood flow in rigid tubes: thickness and slip velocity of plasma film at the wall. J. Appl. Physiol. 21, 27–32 (1966)
Jahnke T., Lubich C.: Error bounds for exponential operator splittings. BIT 40(4), 735–744 (2000)
John V., Novo J.: Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations. SIAM J. Numer. Anal. 49(3), 1149–1176 (2011)
Kernighan, B.W., Ritchie, D.M.: The C programming Language, 2nd edn. Prentice-Hall PTR (1988). ISBN 0-13-110362-8
McLachlan R.I., Quispel G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)
LaCroix D.E., Anand M.: A model for the formation, growth, and dissolution of clots in vitro. Effect of the intrinsic pathway on antithrombin III deficiency and protein C deficiency. Int. J. Eng. Sci. Appl. Math. 3(1–4), 93–105 (2011)
Larson, M.G., Bengzon, F.: The finite element method: theory, implementation, and practice. In: Texts in Computational Science and Engineering, vol. 10. Springer (2010). ISBN 978-3-642-33287-6
Leiderman K., Fogelson A.L.: Grow with the flow: a spatial–temporal model of platelet deposition and blood coagulation under flow. Math. Med. Biol. 28, 47–84 (2011)
Mannucci P.M.: Platelet/von Willebrand factor inhibitors to the rescue of ischemic stroke. Arterioscler. Thromb. Vasc. Biol. 30, 1882–1884 (2010)
Orfeo T., Gissel M., Butenas S., Undas A., Brummel-Ziedins K.E., Mann K.G.: Anticoagulants and the propagation phase of thrombin generation. PLoS One 6(11), e27852 (2011)
Ovanesov M.V., Ananyeva N.M., Panteleev M.A., Ataullakhanov F.I., Saenko E.L.: Initiation and propagation of coagulation from tissue factor-bearing cell monolayers to plasma: initiator cells do not regulate spatial growth rate. J. Thromb. Haemost. 3, 321–331 (2005)
Panteleev M.A., Ananyeva N.M., Greko N.J., Ataullakhanov F.I., Saenko E.L.: Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J. Thromb. Haemost. 3, 2545–2553 (2005)
Papaioannou T.G., Stefanadis C.: Vascular wall shear stress: basic principles and methods. Hellenic J. Cardiol. 46, 9–15 (2005)
Pavlova J., Fasano A., Janela J., Sequeira A.: Numerical validation of a synthetic cell-based model of blood coagulation. J. Theor. Biol. 380, 367–379 (2015)
Pavlova, J.: Mathematical modelling and numerical simulations of blood coagulation. In: Ph.D. Thesis, IST, University of Lisbon (2014)
Pivkin I.V., Richardson P.D., Karniadakis G.: Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proc. Natl. Acad. Sci. 103(46), 17164–17169 (2006)
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York (2007). ISBN 978-0-521-88068-8
Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New-York (2004). ISBN 007-123265-6.
Rajagopal K., Srinivasa A.: A thermodynamic framework for rate type fluid models. J. Non-Newt. Fluid Mech. 88, 207–228 (2000)
Robertson, A.M., Sequeira, A., Kameneva, M.V.: Hemorheology. In: Galdi, G.P., Rannacher R., Robertson A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars), vol. 37, pp. 63–120. Birkhäuser Verlag (2008)
Segal I.A.: Finite Element methods for the Incompressible Navier–Stokes Equations. Delft University of Technology, Delft (2012)
Shen F., Kastrup C.J., Liu Y., Ismagilov R.F.: Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate. Arterioscler. Thromb. Vasc. Biol. 28, 2035–2041 (2008)
Shibeko A.M., Karamzin S.S., Butylin A.A., Panteleev M.A., Ataullakhanov F.I.: The review of contemporary ideas about the influence of flow rate on blood clotting. Biochem. Suppl. Ser. A Membr. Cell Biol. 4(3), 388–394 (2009)
Shibeko A.M., Lobanova E.S., Panteleev M.A., Ataullakhanov F.I.: Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa. BMC Syst. Biol. 4(5), 1–12 (2010)
Sportisse B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161, 140–168 (2000)
Verbiest, B.C.H.: Thrombus formation in aneurysms: an experimental study. In: Master Thesis, Eindhoven University of Technology (2008)
Thurston G.B.: Viscoelasticity of human blood. Biophys. J. 12, 1205–1217 (1972)
Weller F.F.: A free boundary problem modeling thrombus growth: Model development and numerical simulation using the level set method. J. Math. Biol. 61(6), 805–818 (2010)
Yeleswarapu K., Kameneva M., Rajagopal K., Antaki J.: The flow of blood in tubes: theory and experiment. Mech. Res. Commun. 3(25), 257–262 (1998)
Zhao S., Ovadia J., Liu X., Zhang Y.-T., Nie Q.: Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems. J. Comput. Phys. 230(15), 5996–6009 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pavlova, J., Fasano, A. & Sequeira, A. Numerical simulations of a reduced model for blood coagulation. Z. Angew. Math. Phys. 67, 28 (2016). https://doi.org/10.1007/s00033-015-0610-2
Received:
Revised:
Published:
DOI: https://doi.org/10.1007/s00033-015-0610-2