Skip to main content
Log in

Boundedness in a three-dimensional chemotaxis–haptotaxis model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper studies the chemotaxis–haptotaxis system

$$\left\{\begin{array}{lll} u_t = \Delta u - \chi\nabla \cdot (u\nabla v) - \xi\nabla \cdot (u\nabla w) + \mu u(1 - u - w), &\quad(x, t)\in \Omega \times (0, T),\\ v_t = \Delta v - v + u, &\quad(x, t) \in \Omega \times (0, T),\\ w_t= - vw, &\quad(x, t)\in \Omega \times (0,T)\end{array} \right.\quad\quad(\star)$$

under Neumann boundary conditions. Here, \({\Omega \subset {\mathbb{R}}^3}\) is a bounded domain with smooth boundary and the parameters \({\xi,\chi,\mu > 0}\). We prove that for nonnegative and suitably smooth initial data \({(u_0, v_0, w_0)}\), if \({\chi/\mu}\) is sufficiently small, (\({\star}\)) possesses a global classical solution, which is bounded in \({\Omega \times (0, \infty)}\). We underline that the result fully parallels the corresponding parabolic–elliptic–ODE system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos N.D.: \({L^p}\) bounds for solutions of reaction–diffusion equations. Comm. Partial Differ. Equ. 4, 827–868 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellomo N., Bellouquid A., Tao Y., Winkler M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaplain M., Lolas G.: Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Net. Hetero. Med 1, 399–439 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hieber M., Prüss J.: Heat kernels and maximal \({l^p - l^q}\) estimate for parabolic evolution equations. Commun. Partial Differ. Equ. 22, 1647–1669 (1997)

    Article  MATH  Google Scholar 

  5. Hillen T., Painter K.J.: A user’s guide to PDE models in a chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Horstmann D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jber. DMV 105(3), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Horstmann D., Winkler M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Osaki K., Tsujikawa T., Yagi A., Mimura M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  10. Nagai T., Senba T., Yoshida K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvacioj 3, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Stinner C., Surulescu C., Winkler M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM J. Math. Anal. 46, 1969–2007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tao Y.: Global existence for a haptotaxis model of cancer invasion with tissue remodeling. Nonlinear Anal. 12(1), 418–435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tao, Y.: Boundedness in a two-dimensional chemotaxis–haptotaxis system. arXiv:1407.7382 (2014)

  14. Tao Y., Wang M.: Global solution for a chemotactic–haptotactic model of cancer invasion. Nonlinearity 21, 2221–2238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tao Y., Winkler M.: Dominance of chemotaxis in a chemotaxis–haptotaxis model. Nonlinearity 27, 1225–1239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tao Y., Winkler M.: Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 257, 784–815 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tao Y., Winkler M.: Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model. Proc. R. Soc. Edingburgh, Sect. A 144, 1067–1087 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tello J.I., Winkler M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Winkler M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248(12), 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Winkler M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Winkler M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinru Cao.

Additional information

Supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X. Boundedness in a three-dimensional chemotaxis–haptotaxis model. Z. Angew. Math. Phys. 67, 11 (2016). https://doi.org/10.1007/s00033-015-0601-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-015-0601-3

Mathematics Subject Classification

Keywords

Navigation