Skip to main content
Log in

Remarks on the uniqueness of weak solution for the 3D viscous magneto-hydrodynamics equations in \({B^{1}_{\infty,\infty}}\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A uniqueness result of weak solution for the 3D viscous magneto-hydrodynamics equations in \({B^1_{\infty,\infty}}\) is proved by means of the Fourier localization technique and the losing derivative estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão da Veiga H.: A new regularity class for the Navier–Stokes equations in \({{\mathbb R}^n}\). Chin. Ann. Math. 16B, 407–412 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Bony J.M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Chen Q., Miao C., Zhang Z.: The Beale–Kato–Majda criterion to the 3D magneto-hydrodynamics equations. Commun. Math. Phys. 275, 861–872 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen Q., Miao C., Zhang Z.: On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Commun. Math. Phys. 284, 919–930 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen Q., Miao C., Zhang Z.: On the uniqueness of weak solutions for the 3D Navier–Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2165–2180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chemin J.Y., Lerner N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121, 314–328 (1995)

    Article  MathSciNet  Google Scholar 

  7. Danchin R.: Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients. Rev. Mat. Iberoamericana 21, 863–888 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Escauriaza L., Seregin G., S̆verák V.: \({L_{3,\infty}}\)-solutions to the Navier–Stokes equations and backward uniqueness. Russian Math. Surveys 58, 211–250 (2003)

    Article  MathSciNet  Google Scholar 

  9. Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62, 186–212 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. He C., Xin Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235–254 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kozono H., Sohr H.: Remark on uniqueness of weak solutions to the Navier–Stokes equations. Analysis 16, 255–271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Miao, C., Wu, J., Zhang, Z.: Littlewood–Paley Theory and Applications to Fluid Dynamics Equations, Monogr. Modern Pure Math. 142. Science Press, Beijing (2012)

  13. Politano H., Pouquet A., Sulem P.L.: Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 2, 2931–2939 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ribaud F.: A remark on the uniqueness problem for the weak solutions of Navier–Stokes equations. Ann. Fac. Sci. Toulouse Math. 11, 225–238 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Serrin J.: The initial value problem for the Navier–Stokes equations. In: Langer, R.E. (ed.) Nonlinear Problems, pp. 69–98. University of Wisconsin Press, Madison (1963)

    Google Scholar 

  16. Sermange M., Teman R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Triebel, H.: Theory of Function Spaces. In: Monograph in Mathematics, vol.78. Birkhauser Verlag, Basel (1983)

  18. Wu J.: Bounds and new approaches for the 3D MHD equations. J. Nonlinear Sci. 12, 395–413 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu J.: Regularity results for weak solutions of the 3D MHD equations. Discrete Contin. Dyn. Syst. 10, 543–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang Q.: On the uniqueness of weak solutions for the 3D viscous Magneto-hydrodynamics equations. Nonlinear Anal. 74, 5000–5007 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhou Y.: Remarks on regularities for the 3D MHD equations. Discrete Contin. Dyn. Syst. 12, 881–886 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Zhang, Q. Remarks on the uniqueness of weak solution for the 3D viscous magneto-hydrodynamics equations in \({B^{1}_{\infty,\infty}}\) . Z. Angew. Math. Phys. 67, 7 (2016). https://doi.org/10.1007/s00033-015-0594-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-015-0594-y

Mathematics Subject Classification

Keywords

Navigation