Skip to main content
Log in

A reaction–diffusion SIS epidemic model in an almost periodic environment

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A susceptible–infected–susceptible almost periodic reaction–diffusion epidemic model is studied by means of establishing the theories and properties of the basic reproduction ratio \({R_{0}}\). Particularly, the asymptotic behaviors of \({R_{0}}\) with respect to the diffusion rate \({D_{I}}\) of the infected individuals are obtained. Furthermore, the uniform persistence, extinction and global attractivity are presented in terms of \({R_{0}}\). Our results indicate that the interaction of spatial heterogeneity and temporal almost periodicity tends to enhance the persistence of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen L.J.S., Bolker B.M., Lou Y., Nevai A.L.: Asymptotic profiles of the steady states for an SIS epidemic disease patch model. SIAM J. Appl. Math. 67, 1283–1309 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allen L.J.S., Bolker B.M., Lou Y., Nevai A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model. Discrete Contin. Dyn. Syst. A 21, 1–20 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Altizer S., Dobson A., Hosseini P., Hudson P., Pascual M., Rohani P.: Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484 (2006)

    Article  Google Scholar 

  4. Bacaër N., Guernaoui S.: The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol. 53, 421–436 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caraco T., Glavanakov S., Chen G., Flaherty J.E., Ohsumi T.K., Szymanski B.K.: Stage structured infection transmission and a spatial epidemic: a model for Lyme disease. Am. Nat. 160, 348–359 (2002)

    Article  Google Scholar 

  6. Corduneanu C.: Almost Periodic Functions. Chelsea Publishing Company, New York, NY (1989)

    MATH  Google Scholar 

  7. Daners, D., Koch Medina, P.: Abstract Evolution Equations, Periodic Problems and Applications (Pitman Research Notes in Mathematics Series vol. 279). Harlow, Longman Scientific & Technical (1992)

  8. Diekmann O., Heesterbeek J.A.P., Metz J.A.J.: On the definition and the computation of the basic reproduction ratio \({R_{0}}\) in the models for infectious disease in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fink, A.M.: Almost Periodic Differential Equations, Lecture Notes in Mathematics, Springer, Berlin (1974)

  10. Gilbarg I.D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, 2nd ed. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  11. Hale, J.K.: Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25. American Mathematical Society, Providence, RI (1988)

  12. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840. Springer, Berlin (1981)

  13. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics, Series 247. Longman Scientific and Technical (1991)

  14. Huang W., Han M., Liu K.: Dynamics of an SIS reaction–diffusion epidemic model for disease transmission. Math. Biosci. Eng. 7, 51–66 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hutson V., Mischaikow K., Polácik P.: The evolution of dispersal rates in heterogeneous time-periodic environment. J. Math. Biol. 43, 501–533 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hutson V., Shen W., Vickers G.T.: Estimates for the principal spectrum point for certain time-dependent parabolic operators. Proc. Am. Math. Soc. 129, 1669–1679 (2000)

    Article  MathSciNet  Google Scholar 

  17. Lewis M., Renclawowicz J., van den Driessche P.: Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol. 68, 3–23 (2006)

    Article  MathSciNet  Google Scholar 

  18. Lieberman G.M.: Second Order Parabolic Differential Equations. World Scientific, River Edge, NJ (1996)

    Book  MATH  Google Scholar 

  19. Lou Y., Zhao X.-Q.: A reaction–diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62, 543–568 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Murray J.D., Stanley E.A., Brown D.L.: On the spatial spread of rabies among foxes. Proc. R. Soc. Lond. Ser. B 229, 111–150 (1986)

    Article  Google Scholar 

  21. Ou C., Wu J.: Spatial spread of rabies revisited: Influence of age-dependent diffusion on nonlinear dynamics. SIAM J. Appl. Math. 67, 138–163 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pang P.Y.H., Wang M.: Strategy and stationary pattern in a three-species predator-prey model. J. Diff. Equ. 200, 245–273 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Peng R.: Asymptotic profile of the positive steady state for an SIS epidemic reaction–diffusion model: I. J. Diff. Equ. 247, 1096–1119 (2009)

    Article  MATH  Google Scholar 

  24. Peng R., Liu S.: Global stability of the steady states of an SIS epidemic reaction–diffusion model. Nonlinear Anal. TMA 71, 239–247 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Peng R., Zhao X.-Q.: A reaction–diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Protter M.H., Weinberger H.F.: Maximum Principles in Differential Equations. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  27. Sacker R., Sell G.: A spectral theory for linear differential systems. J. Diff. Equ. 27, 320–358 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sell G.: Topological Dynamics and Ordinary Differential Equations. Van Nostrand Reinhold, London (1971)

    MATH  Google Scholar 

  29. Shen W., Yi Y.: Almost automorphic and almost periodic dynamics in skew-product semiflows. Mem. Am. Math. Soc. 647, 136 (1998)

    MathSciNet  Google Scholar 

  30. Thieme H.R.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

  32. Wang B.-G., Zhao X.-Q.: Basic reproduction ratios for almost periodic compartmental epidemic models. J. Dyn. Diff. Equ. 25, 535–562 (2013)

    Article  MATH  Google Scholar 

  33. Wang W., Zhao X.-Q.: A nonlocal and time-delayed reaction–diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang W., Zhao X.-Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Diff. Equ. 20, 699–717 (2008)

    Article  MATH  Google Scholar 

  35. Wang Y., Zhao X.-Q.: Global convergence in monotone and uniformly stable recurrent skew-product semiflows. Infinite dimensional dynamical systems. Fields Inst. Commun. 64, 391–406 (2013)

    Article  Google Scholar 

  36. Zhao X.-Q.: Persistence in almost periodic predator-prey reaction–diffusion systems. Fields Inst. Commun. 36, 259–268 (2003)

    Google Scholar 

  37. Zhao X.-Q.: Global attractivity in monotone and subhomogeneous almost periodic systems. J. Diff. Equ. 187, 494–509 (2003)

    Article  MATH  Google Scholar 

  38. Zhao X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    Book  MATH  Google Scholar 

  39. Zhao X.-Q.: Global dynamics of a reaction and diffusion model for Lyme disease. J. Math. Biol. 65, 787–808 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin-Guo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BG., Li, WT. & Wang, ZC. A reaction–diffusion SIS epidemic model in an almost periodic environment. Z. Angew. Math. Phys. 66, 3085–3108 (2015). https://doi.org/10.1007/s00033-015-0585-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0585-z

Mathematics Subject Classification

Keywords

Navigation