Skip to main content
Log in

Poiseuille flow and thermal transpiration of a rarefied gas between parallel plates II: effect of nonuniform surface properties in the longitudinal direction

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Poiseuille flow and thermal transpiration of a rarefied gas between two parallel plates are studied for the situation that one of the walls is a Maxwell-type boundary with a periodic distribution of the accommodation coefficient in the longitudinal direction. The flow behavior is studied numerically based on the Bhatnager–Gross–Krook–Welander model of the Boltzmann equation. The solution is sought in a superposition of a linear and a periodic functions in the longitudinal coordinate. The numerical solution is provided over a wide range of the mean free path and the parameters characterizing the distribution of the accommodation coefficient. Due to the nonuniform surface properties in the longitudinal direction, the flow is nonparallel, and a deviation in the pressure and the temperature of the gas from those of the conventional parallel flow is observed. An energy transfer between the gas and the walls arises. The mass flow rate of the gas is approximated by a formula consisting of the data of one-dimensional flows; however, a non-negligible disagreement is observed in Poiseuille flow when the amplitude of the variation of the accommodation coefficient is sufficiently large. The validity of the present approach is confirmed by a direct numerical analysis of a flow through a long channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cercignani C.: Plane Poiseuille flow and Knudsen minimum effect. In: Laurmann, J.A. (ed.) Rarefied Gas Dynamics, vol. II., pp. 92–101. Academic Press, New York (1963)

    Google Scholar 

  2. Cercignani C., Daneri A.: Flow of a rarefied gas between parallel plates. J. Appl. Phys. 34, 3509–3513 (1963)

    Article  MathSciNet  Google Scholar 

  3. Niimi H.: Thermal creep flow of rarefied gas between two parallel plates. J. Phys. Soc. Jpn. 30, 572–574 (1971)

    Article  Google Scholar 

  4. Loyalka S.K.: Kinetic theory of thermal transpiration and mechanocaloric effect. I. J. Chem. Phys. 55, 4497–4503 (1971)

    Article  Google Scholar 

  5. Kanki T., Iuchi S.: Poiseuille flow and thermal creep of a rarefied gas between parallel plates. Phys. Fluids 16, 594–599 (1973)

    Article  MATH  Google Scholar 

  6. Loyalka S.K.: Comments on “Poiseuille flow and thermal creep of a rarefied gas between parallel plates”. Phys. Fluids 17, 1053–1055 (1974)

    Article  MATH  Google Scholar 

  7. Loyalka S.K.: Kinetic theory of thermal transpiration and mechanocaloric effect. II. J. Chem. Phys. 63, 4054–4060 (1975)

    Article  Google Scholar 

  8. Ohwada T., Sone Y., Aoki K.: Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1, 2042–2049 (1989)

    Article  MATH  Google Scholar 

  9. Sone, Y., Itakura, E.: Analysis of Poiseuille and thermal transpiration flows for arbitrary Knudsen numbers by a modified Knudsen number expansion method and their database. J. Vac. Soc. Jpn. 33, 92–94 (1990) (in Japanese)

  10. Sharipov F., Seleznev V.: Data on internal rarefied gas flows. J. Phys. Chem. Ref. Data 27, 657–706 (1998)

    Article  Google Scholar 

  11. Sharipov F.: Application of the Cercignani–Lampis scattering kernel to calculations of rarefied gas flows I. Plane flow between two parallel plates. Eur. J. Mech. B/Fluids 21, 113–123 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cercignani C.: Slow Rarefied Flows. Birkhäuser, New York (2006)

    Book  MATH  Google Scholar 

  13. Sone Y.: Molecular Gas Dynamics. Birkhäuser, New York (2007)

    Book  MATH  Google Scholar 

  14. Chen C.C., Chen I.K., Liu T.-P., Sone Y.: Thermal transpiration for the linearized Boltzmann equation. Commun. Pure. Appl. Math. 60, 147–163 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kosuge S., Takata S.: Database for flows of binary gas mixtures through a plane microchannel. Eur. J. Mech. B/Fluids 27, 444–465 (2008)

    Article  MATH  Google Scholar 

  16. Sharipov F., Bertoldo G.: Poiseuille flow and thermal creep based on the Boltzmann equation with the Lennard–Jones potential over a wide range of the Knudsen number. Phys. Fluids 21, 067101 (2009)

    Article  Google Scholar 

  17. Takata S., Funagane H.: Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution function. J. Fluid Mech. 669, 242–259 (2011)

    Article  MATH  Google Scholar 

  18. Doi T.: Effect of weak gravitation on the plane Poiseuille flow of a highly rarefied gas. J. Appl. Math. Phys. (ZAMP) 63, 1091–1102 (2012)

    MATH  MathSciNet  Google Scholar 

  19. Doi T.: Plane thermal transpiration of a rarefied gas in the presence of gravitation. Vacuum 86, 1541–1546 (2012)

    Article  Google Scholar 

  20. Doi T.: Effect of weak gravitation on the plane thermal transpiration of a slightly rarefied gas. Fluid Dyn. Res. 44, 065503 (2012)

    Article  MathSciNet  Google Scholar 

  21. Cercignani C., Lampis M.: Kinetic model of gas-surface interaction. Transp. Theory Stat. Phys. 1, 101–144 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  22. Veijola T., Kuisma H., Lahdenperä J.: The influence of gas-surface interaction on gas-film damping in a silicon accelerometer. Sens. Actuators A 66, 83–92 (1998)

    Article  Google Scholar 

  23. Cercignani C., Lampis M., Lorenzani S.: Variational approach to gas flows in microchannels. Phys. Fluids 16, 3426–3437 (2004)

    Article  MathSciNet  Google Scholar 

  24. Cercignani C., Lampis M., Lorenzani S.: Plane Poiseuille flow with symmetric and nonsymmetric gas-wall interactions. Transp. Theory Stat. Phys. 33, 545–561 (2004)

    Article  MathSciNet  Google Scholar 

  25. Scherer C.S., Prolo Filho J.F., Barichello L.B.: An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. I. Flow problems. J. Appl. Math. Phys. (ZAMP) 60, 70–115 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Doi T.: Plane thermal transpiration of a rarefied gas between two walls of Maxwell-type boundaries with different accommodation coefficients. ASME J. Fluids Eng. 136, 081203 (2014)

    Article  Google Scholar 

  27. Doi, T.: Plane Poiseuille flow and thermal transpiration of a highly rarefied gas between the two walls of Maxwell-type boundaries with different accommodation coefficients: effect of a weak external force. J. Appl. Math. Phys. (ZAMP) 66(4), 1805–1820 (2015)

  28. Doi, T.: Poiseuille flow and thermal transpiration of a rarefied gas between parallel plates: Effect of nonuniform surface properties of the plates in the transverse direction. ASME J. Fluids Eng. 137(10), 101103 (2015)

  29. Bhatnagar P.L., Gross E.P., Krook M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  30. Welander P.: On the temperature jump in a rarefied gas. Ark. Fys. 7, 507–553 (1954)

    MATH  MathSciNet  Google Scholar 

  31. Seagate Technology, Discrete track media. U.S. Patent No. 20130017413 A1 (2013)

  32. Hardt, S., Baier, T., Shrestha, S., Tiwari, S., Klar, A.: Particle orientation during thermophoretic transport in a gas phase. Bull. Am. Phys. Soc. 59, vol. 20, 444 (2014)

  33. Chu C.K.: Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 8, 12–22 (1965)

    Article  Google Scholar 

  34. Sharipov F., Kalempa D.: Oscillatory Couette flow at arbitrary oscillation frequency over the whole range of the Knudsen number. Microfluid. Nanofluid. 4, 363–374 (2008)

    Article  Google Scholar 

  35. Doi T.: Numerical analysis of the oscillatory Couette flow of a rarefied gas on the basis of the linearized Boltzmann equation for a hard sphere molecular gas. J. Appl. Math. Phys. (ZAMP) 61, 811–822 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Doi T.: Numerical analysis of the time-dependent energy and momentum transfers in a rarefied gas between two parallel planes based on the linearized Boltzmann equation. ASME J. Heat Transf. 133, 022404 (2011)

    Article  Google Scholar 

  37. Abramowitz M., Stegun I.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Doi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doi, T. Poiseuille flow and thermal transpiration of a rarefied gas between parallel plates II: effect of nonuniform surface properties in the longitudinal direction. Z. Angew. Math. Phys. 66, 3405–3423 (2015). https://doi.org/10.1007/s00033-015-0580-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0580-4

Mathematics Subject Classification

Keywords

Navigation