Skip to main content
Log in

Moving boundary problems for the Harry Dym equation and its reciprocal associates

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Moving boundary problems of generalised Stefan type are considered for the Harry Dym equation via a Painlevé II symmetry reduction. Exact solutions of such nonlinear boundary value problems are obtained in terms of Yablonski–Vorob’ev polynomials corresponding to an infinite sequence of values of the Painlevé II parameter. The action of two kinds of reciprocal transformation on the moving boundary problems is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasconcelos G.L., Kadanoff L.P.: Stationary solutions for the Saffman–Taylor problem with surface tension. Phys. Rev. A 44, 6490–6495 (1991)

    Article  Google Scholar 

  2. Kruskal M.: Nonlinear wave equations. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications, Lecture Notes in Physics, vol. 38, pp. 310–354. Springer, Heidelberg (1975)

  3. Vassiliou, P.J.: Harry Dym equation. In: Hazelwinkel, M. (ed.) Encyclopaedia of Mathematics. Springer, Berlin (2001)

  4. Tanveer S.: Evolution of Hele–Shaw interface for small surface tension. Philos. Trans. R. Soc. Lond. A 343, 155–204 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fokas, A.S., Tanveer, S.: A Hele–Shaw problem and the second Painlevé transcendent. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 124, pp. 169–191 (1998)

  6. Schief W.K., Rogers C.: Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces. Proc. R. Soc. Lond. A 455, 3163–3188 (1996)

    Article  MathSciNet  Google Scholar 

  7. Rubenstein, L.I.: The Stefan Problem, American Mathematical Society Translations, vol. 27, American Mathematical Society (1971)

  8. Friedman A.: Variational Principles and Free Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  9. Elliot C.M., Ockendon J.R.: Weak and Variational Methods for Moving Boundary Problems, Research Notes in Mathematics, vol. 59. Pitman, New York (1982)

    Google Scholar 

  10. Crank J.: Free and Moving Boundary Value Problems. Clarendon Press, Oxford (1984)

    Google Scholar 

  11. Alexides V., Solomon A.D.: Mathematical Modelling of Melting and Freezing Processes. Hemisphere Taylor and Francis, Washington (1996)

    Google Scholar 

  12. Tarzia D.A.: A bibliography on moving-free boundary wave problems for the heat diffusion equation. The Stefan Problem. MAT-Serie A 2, 1–297 (2000)

    Google Scholar 

  13. Conte, R. (Ed.): The Painlevé Property: One Century Later. Springer, New York (1999)

  14. Rogers C., Bassom A., Schief W.K.: On a Painlevé II model in steady electrolysis: application of a Bäcklund transformation. J. Math. Anal. Appl. 240, 367–381 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bass L.K., Nimmo J., Rogers C., Schief W.K.: Electrical structures of interfaces, A Painlevé II model. Proc. R. Soc. Lond. A 466, 2117–2136 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bracken A.J., Bass L., Rogers C.: Bäcklund flux-quantization in a model of electrodiffusion based on Painlevé II. J. Phys. A Math. Theor. 45, 105204 (2012)

    Article  MathSciNet  Google Scholar 

  17. Bass L., Bracken A.J.: Emergent behaviour in electrodiffusion: Planck’s other quanta. Rep. Math. Phys. 73, 65–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bass L., Moore W.J.: Electric fields in perfused nerves. Nature 214, 393–394 (1967)

    Article  Google Scholar 

  19. Conte R., Rogers C., Schief W.K.: Painlevé structure of a multi-ion electrodiffusion system. J. Phys. A Math. Theor. 40, F1031–F1040 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rogers C.: Application of a reciprocal transformation to a two phase Stefan problem. J. Phys. A Math. Gen. 18, L105–L109 (1985)

    Article  MATH  Google Scholar 

  21. Rogers C.: On a class of moving boundary value problems in nonlinear heat conduction. Application of a Bäcklund transformation. Int. J. Nonlinear Mech. 21, 249–256 (1986)

    Article  MATH  Google Scholar 

  22. Storm M.L.: Heat equations in simple metals. J. Appl. Phys. 22, 940–951 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rogers C., Guo B.Y.: A note on the onset of melting in a class of simple metals. Conditions on the applied boundary flux. Acta Math. Sci. 8, 425–430 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Tarzia D.A.: An inequality for the coefficient σ of the free boundary \({s(t)=\sigma\sqrt{t}}\) of the Neumann problem for the two-phase Stefan problem. Quart. Appl. Math. 39, 491–497 (1981)

    MathSciNet  Google Scholar 

  25. Solomon A.D., Wilson D.G., Alexides V.: Explicit solutions to phase problems. Quart. Appl. Math. 41, 237–243 (1983)

    MathSciNet  MATH  Google Scholar 

  26. Fokas A.S., Rogers C., Schief W.K.: Evolution of methacrylate distribution during wood saturation. A nonlinear moving boundary problem. Appl. Math. Lett. 18, 321–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fokas A.S.: A unified transform method for solving linear and certain nonlinear PDES. Proc. R. Soc. Lond. A 453, 1411–1443 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rogers C., Broadbridge P.: Sedimentation in a bounded column. Int. J. Nonlinear Mech. 27, 661–667 (1992)

    Article  Google Scholar 

  29. Rogers C., Nucci M.C.: On reciprocal Bäcklund transformations and the Korteweg-de Vries hierarchy. Phys. Scr. 33, 289–292 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Swenson J.B., Voller V.R., Paola C., Parker G., Marr J.G.: Fluvio-deltaic sedimentation: a generalised Stefan problem. Eur. J. Appl. Math. 11, 433–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Voller V.R., Swenson J.B., Paola C.: An analytical solution for a Stefan problem with variable latent heat. Int. J. Heat Mass Transf. 47, 5387–5390 (2004)

    Article  MATH  Google Scholar 

  32. Zhou Y., Bu W.K., Lu M.: One-dimensional consolidation with a threshold gradient: a Stefan problem with rate-dependent latent heat. Num. Anal. Math. Geomech. 37, 2825–2832 (2013)

    Google Scholar 

  33. McConnell T.R.: The two-sided Stefan problem with spatially dependent latent heat. Trans. Am. Math. Soc. 326, 669–699 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Patnaik S., Voller V.R., Parker G., Frascati A.: Morphology of a melt front under a condition of spatial varying latent heat. Int. Commun. Heat Mass. Transf. 36, 535–538 (2009)

    Article  Google Scholar 

  35. Salva N.N., Tarzia D.A.: Explicit solution for a Stefan problem with variable latent heat and constant heat flux boundary conditions. J. Math. Anal. Appl. 379, 240–244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou Y., Wang Y.J., Bu W.K.: Exact solution for a Stefan problem with latent heat a power function of position. Int. J. Heat Mass. Transf. 69, 451–454 (2014)

    Article  Google Scholar 

  37. Lukashevich N.A.: The second Painlevé equation. Diff. Equ. 7, 853–854 (1971)

    Google Scholar 

  38. Rogers C., Shadwick W.F.: Bäcklund Transformations and Their Applications. Academic Press, New York (1982)

    MATH  Google Scholar 

  39. Rogers C., Schief W.K.: Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  40. Yablonskii A.I.: On rational solutions of the second Painlevé equations. Vesti. Akad. Nauk. BSSR Ser. Fiz. Tkh. Nauk 3, 30–35 (1959)

    Google Scholar 

  41. Vorob’ev A.P.: On rational solutions of the second Painlevé equations. Diff. Equ. 1, 79–81 (1965)

    MathSciNet  Google Scholar 

  42. Clarkson P.A.: Remarks on the Yablonski–Vorob’ev polynomials. Phys. Lett. A 319, 137–144 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Keller J.B.: Melting and freezing at constant speed. Phys. Fluids 92, 2013 (1986)

    Article  Google Scholar 

  44. Rogers C.: Reciprocal relations in non-steady one-dimensional gasdynamics. Zeit. Angew. Math. Phys. 19, 58–63 (1968)

    Article  MATH  Google Scholar 

  45. Rogers C.: Invariant transformations in non-steady gasdynamics and magneto-gasdynamics. Zeit. angew. Math. Phys. 20, 370–382 (1969)

    Article  MATH  Google Scholar 

  46. Rogers C., Wong P.: On reciprocal Bäcklund transformations of inverse scattering schemes. Phys. Scr. 30, 10–14 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Weiss J., Tabor M., Carnevale G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kingston J.G., Rogers C.: Reciprocal Bäcklund transformations of conservation laws. Phys. Lett. 92, 261–264 (1982)

    Article  MathSciNet  Google Scholar 

  49. Rogers C.: The Harry Dym equation in 2+1 dimensions: a reciprocal link with the Kadomtsev–Petriashvili equation. Phys. Lett. A 120, 15–18 (1987)

    Article  MathSciNet  Google Scholar 

  50. Konopelchenko B.G., Dubrovsky V.G.: Some new integrable nonlinear evolution equations in 2+1-dimensions. Phys. Lett. 102, 15–17 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Rogers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, C. Moving boundary problems for the Harry Dym equation and its reciprocal associates. Z. Angew. Math. Phys. 66, 3205–3220 (2015). https://doi.org/10.1007/s00033-015-0567-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0567-1

Mathematics Subject Classification

Keywords

Navigation